Preamble:

3 The International CARDIO Alliance to Improve Disease Outcomes (iCARDIO Alliance, https://icardioalliance.org) aims to gather 4 leading cardiovascular societies around the globe as partner organizations to improve the guality of cardiovascular care, from 5 prevention and diagnosis to treatment and follow-up. The goal of these global implementation guidelines is to achieve global 6 representation in writing panels and to produce concise and practical guidelines applicable to all cardiovascular care worldwide. 7 In addition, these guidelines will take into account economic constraints that hamper the full implementation of typical evidence 8 based guideline recommendations in many instances. Hence, the evidence-based recommendations by iCardio Alliance will take 9 into account also resource availability on 3 economic levels: 1) "evidence-based" guideline recommendations with no economic 10 consideration, 2) recommendations for when resources are 'somewhat limited', and 3) recommendations for when resources are 11 'severely limited'. resource availability on at least 3 economic levels (with no economic consideration; resources somewhat limited; 12 resources severely limited). They are written by a team including world-renowned experts with a maximum of 50% of the writing 13 task force representing Europe and North America and 50% or more from the rest of the world. The peer review team is also made 14 up of worldwide experts further enriching these documents and leading to a final phase of public review open to all (see below). 15 The viewpoints of persons with lived experience are embedded within this global implementation guideline process. Through this 16 innovative approach the iCardio Alliance hopes to enhance guideline dissemination and implementation on a global scale.

17 The public review phase the iCARDIO Global Implementation Guidelines on Obesity Management 2025 right now and will last until 18 Monday 26 May, 2025. All comments must be submitted via the dedicated comment form which can be downloaded from the 19 Global Cardiology website as well as from the iCARDIO Alliance website (Home - iCARDIO Alliance). Please use page, line, and/or 20 table and recommendation numbers for reference in your commentaries as appropriate. Comments received will be taken into 21 consideration, but will not be published. Anonymous comments will be disregarded.

The deadline for receiving comments is 26th of May, 2025.
 To submit your comments please use the comment form and send it to: public.review@icardio.org
 doi.org/10.4081/cardio.2025.71
 Draft Document for Public Consultation:
 iCARDIO ALLIANCE GLOBAL IMPLEMENTATION GUIDELINES

29

30

1 2

> ON OBESITY MANAGEMENT 2025 Focus on Prevention and Treatment of Cardio-Metabolic Disease

3132 ABSTRACT

33 Despite the availability of several guidelines, inconsistencies in healthcare access, varying infrastructure, resource 34 constraints and diverse local practices restrict their global applicability. This underscores the need for universal 35 recommendations that address the unique challenges faced by patients and healthcare providers worldwide. Our Global 36 Guidelines emphasize the incorporation of novel therapies, while integrating standard of care with the most up-to-date 37 evidence to enable clinicians to optimize heart failure (HF) management. Context-specific recommendations tailored to 38 individual patient needs are highlighted providing a thorough evaluation of the risks, benefits, and overall value of each 39 therapy, aiming to establish a standard of care that improves patient outcomes and reduces the burden of hospitalization 40 in this susceptible population. These guidelines provide evidence based recommendations that represent a group 41 consensus considering the many other published guidelines that have reviewed many of the issues discussed here, but 42 they also make new recommendations where new evidence has recently emerged, and - most importantly - also 43 provide recommendations on a number of issues where resource limitations may put constraints on the care provided 44 to HF patients. Such "economic adjustment" recommendations aim to provide guidance for situations when "Resources 45 are somewhat limited" or when "Resources are severely limited". Hence, this document presents a comprehensive 46 update to HF management guidelines thereby aiming to provide a unified strategy for the pharmacological, non-47 pharmacological, and invasive management of this significant global health challenge that is applicable to the needs of 48 healthcare around the globe.

1 INTRODUCTION

2 Obesity- a chronic disease affecting a multitude of organ systems is classified by the World Health Organization (WHO) as a body mass index (BMI) \geq 30 kg/m² or 27.5 kg/m² for Asian populations.¹ It emerged 3 4 as an epidemic in the U.S. in the late 1970s², before subsequently sweeping across the rest of the Western world³. Recently, there has been a growing acknowledgment of the limitations of the role of BMI in classifying 5 6 obesity, as it tends to over- and under-estimate adiposity and fails to adequately encompass its impact on health and well-being. Therefore, the concept of 'clinical obesity' as a chronic or systemic illness 7 8 characterized by the detrimental interplay between adiposity and normal physiological operations has emerged as a new mode of describing obesity.⁴ Current epidemiological surveys estimate the current global 9 10 prevalence of obesity to be as high as 880 million people, which is predicted to increase to 1 billion people by 2025. This statistic is especially alarming when analyzed in the backdrop of the obesity-associated 11 increase in healthcare costs. Cawley et al.⁵ concluded that in the U.S. alone, the obesity-related healthcare 12 13 expenditure amounted to about \$260 billion in 2016, constituting between 5% and 10% of overall healthcarerelated spending.⁶ This underscores the importance of adequate recognition of approaches for early 14 15 detection, lifestyle modifications-based management, drug therapies, and surgical modalities guintessential 16 to dealing with the perils of rapidly increasing prevalence of obesity.

The first comprehensive set of obesity-related guidelines was published in 1998 by the National Heart, Lung, and Blood Institute (NHLBI).⁷ Since then, a diverse assortment of guidelines, principally from the developed world, has been published in the literature.⁷⁻²⁴ However, heterogeneity in the population pool used for devising these recommendations leading to poor generalizability, varying complexities in healthcare infrastructure across institutions, a perceived lack of knowledge amongst providers and a limited availability of resources especially prevalent in the developing world,²⁵ have been recognized as considerable impediments in their universal adoption and application for obesity diagnosis and management.

24 The last few decades have recorded a rapid evolution in obesity management, through a better understanding 25 of the impact of lifestyle-based interventions, advancements in medicinal therapeutics, and minimally invasive 26 bariatric surgery options. The clinical practice guidelines (CPGs) have failed to keep pace with this changing 27 landscape of obesity management, underscoring the need for a new and up-to-date set of recommendations. 28 In addition, a vast majority of the existing recommendations are derived from CPGs published in other 29 disciplines that mention obesity only very briefly, underlining a paucity of comprehensive consensus 30 statements on obesity management from international committees on obesity and cardio-metabolic health. Finally, the prevalence of obesity is increasing in both high and middle to low-income countries²⁶, highlighting 31 32 the urgent need for successful adaptation of recommendations to be more relevant to and implementable in 33 low-income countries as a step towards curtailing the growth in the obesity epidemic.

Interventional randomized controlled trials over the past two years have shown that targeting obesity as an independent risk factor in both diabetics and non-diabetics mitigates the risk of cardiovascular adverse events, including atherosclerotic cardiovascular disease, heart failure hospitalizations, inflammation, and atrial fibrillation with a reduction in high-sensitivity C-reactive protein (CRP) levels,^{27,28} underpinning a mechanistic relationship between obesity management and cardiovascular risk prevention.

This epidemiological and interventional evidence has also led to establishing a universal definition of Cardio-1 Kidney-Metabolic syndrome pathophysiologic staging with obesity as the initial trigger²⁹ and that the maiority 2 of patients with HFpEF and ASCVD have obesity and overweight as a major risk factor driving progression 3 and CV risk.³⁰ Hence, this consensus statement aims to establish an up-to-date set of CPGs for diagnosing 4 and treating obesity across a wide-spectrum of healthcare settings, considering the differences in attitudes 5 and clinical practices across both the high and middle to low income countries, by integrating 6 7 recommendations from the previously published literature with the latest evidence-based practices for optimal disease management. This document aims to serve as a comprehensive resource for healthcare providers 8 9 by outlining the optimal strategies for diagnosing and treating obesity through the latest evidence-based 10 recommendations in lifestyle modifications, drug therapies and surgical options.

11 METHODS

12 These consensus-based clinical practice guidelines for diagnosing and managing obesity were developed per the established methodology for best practices in guideline development. A systematic review of existing 13 14 literature was conducted to establish a repository of published guideline documents and consensus 15 statements, using the following search strategy: (obesity OR overweight OR "body mass index" OR BMI) 16 AND (guideline OR "clinical practice guideline" OR "practice guideline" OR "consensus" OR "consensus 17 statement"). After discussion amongst experts, the most relevant guidelines for each region were selected 18 and their recommendations were compiled. Following this, redundant/similar recommendations were 19 eliminated. The remaining recommendations were reviewed by the committee, and over several iterations, 20 outdated and non-pertinent recommendations were eliminated. New recommendations were added based 21 on emerging data, that were not available when source guidelines were drafted. Based on the available 22 evidence and consensus among the committee members regarding the risks and benefits of interventions. 23 the recommendations were classified into three tiers: strongly recommend (SR), recommend (R), and 24 suggest (Su). Lastly, wherever relevant, alternative recommendations were added for low resource settings.

25

26 Grading and Recommendation

DEFINITION	LEVEL OF RECOMMENDATION
Evidence or consensus that a specific diagnostic test or treatment is effective, beneficial and valuable.	Strongly Recommend (SR)
Majority of evidence or opinions support the benefits or effectiveness.	Recommend (R)
Usefulness or effectiveness is less clearly supported by evidence or opinion.	Suggest (Su)
Evidence or consensus suggests that it is ineffective and, in some cases, may even be harmful.	Do not do (DND)

1 **DIAGNOSIS**

Body mass index (BMI) is the most widely used tool for diagnosing obesity. Due to its simplistic nature, it fails to provide a more granular estimate of total body composition- a key metric for calculating obesityassociated cardiometabolic risk. Moreover, the interracial phenotypic variations in stature and body fat distribution are not accounted for by BMI.³¹ Alternative measure of adiposity have been proposed, including waist circumference, A comprehensive account of obesity-related diagnostic modalities is listed in **Table 1**.

7 (a) Non-judgmental language

Individuals living with obesity experience discriminatory behaviors and scrutiny due to excess body weight, a phenomenon termed 'weight stigma'.³² Research has shown that the internalization of weight stigma is associated with significantly worse weight loss outcomes³³ secondary to a lack of confidence, anxiety, depression, and a reduced sense of self-esteem.³⁴ Healthcare workers should ascertain the extent of the patient's willingness to discuss weight management, ask open-ended questions, and use non-judgmental language during patient encounters (e.g. replacing phrases such as, 'obese individuals' or 'morbid obesity' with 'individuals with obesity' results in better discussion outcomes).

The 5As framework (ask, assess, advise, agree, and assist) provides the foundation for initiating and conducting motivational interviewing for weight management in individuals living with obesity.³⁵

17 (b) Body mass index and anthropometric measures

Body mass index (BMI), calculated as weight (kg)/height² (m), is a useful first-line screening tool for identifying 18 patients with obesity. The standard BMI cut-offs for overweight and obesity recommended by the World 19 Health Organization (WHO) are 25–29.9 kg/m² and \geq 30 kg/m², respectively. Despite its widespread adoption. 20 BMI is limited in its ability to discern lean body mass from body fat, thus providing a poor estimation of the 21 22 total body fat percentage- an important clinical marker for obesity-related cardiovascular disease (CVD) risk prognosis.³⁶ BMI fails to adjust for age, sex, and race-based differences in body fat composition, especially 23 24 in adults. Wang et al. demonstrated that Asians recorded higher total body fat percentages at lower BMI values than their Caucasian counterparts.³⁷ 25

Anthropometric measurements namely, waist circumference, waist: hip ratio, DEXA, and computed tomography (CT) scans are more comprehensive measures of body fat distribution. Combining BMI with anthropometric measures of central obesity, which have demonstrated superior sensitivity and specificity in CVD risk prognostication, allows for a more robust evaluation of obesity-related complications.

30 (c) BMI evaluation for individuals of Asian descent

For a given level of body fat, age, and sex, individuals of Asian descent generally exhibit a lower BMI (by approximately 2–3 kg/m²) compared to their White counterparts, likely attributable to variations in body composition and muscularity, mandating the need for using different BMI cut-offs for this cohort for severity and risk estimation.³⁸

In 2004, a WHO Expert Consultation panel analyzed metabolic risk data from Asian countries and recommended lowering BMI thresholds for public health interventions in Asian populations. They proposed

defining BMI ranges of 23–27.5 kg/m² as overweight and BMI ≥27.5 kg/m² as obese for this subset.¹ 1 However, it is important to acknowledge that different Asian countries may have established their own BMI 2 cut-offs for the diagnosis of overweight and obesity based on local epidemiological data. Where such 3 country-specific thresholds exist, they should be used in place of the generalized WHO recommendations to 4 ensure contextually appropriate risk stratification and intervention. Using the standard cut-offs in the United 5 States, Asian Americans have low rates of overweight/obesity compared to the Non-Hispanic White (NH-6 White), African American, and Hispanic ethnic groups, yet they suffer from a disproportionately high burden 7 of type 2 diabetes and associated metabolic abnormalities despite normal body weight profiles.³⁹ 8

9 (d) Bioelectrical impedance analysis (BIA) for body fat estimation

BIA utilizes impedance to electric conduction as a surrogate for estimating total body fat percentage and fatfree mass.⁴⁰ The accuracy and precision of this approximation are affected by hydration status, body geometry, and body water distribution.⁴¹

- 13 The most accurate methods for estimating total body fat percentage are densitometry-based modalities,
- 14 namely, underwater plethysmography and DEXA scanning.⁴²
- 15

No.	Guideline Statement	Level of Recommendation
1-01	Use person-centered, non-judgmental language when working with individuals living with obesity.	Su
1-02	Measure BMI at least annually in individuals without a previous diagnosis of obesity.	SR
1-03	Use a lower cut-off for BMI (\geq 27.5 kg/m ²) and waist circumference (\geq 85 cm for men and \geq 74 to 80 cm for women) in evaluating South Asian, Southeast Asian, and East Asian adults for obesity.	SR
1-04	Use anthropometric measurements such as waist circumference as an additional tool to estimate and track adiposity.	SR
1-05	Use a waist circumference cut-off point of ≥94 cm in men and ≥80 cm in women for diagnosing obesity; for the U.S. and the Canadian populations, the cutoff points should be increased to ≥102 cm for men and ≥88 cm for women.	SR
1-06	Evaluate individuals with obesity for 'clinical obesity' by screening them for obesity- related comorbidities such as hypertension, diabetes, hypercholesterolemia, heart failure, and non-restorative sleep	SR
1-07	Screen individuals with overweight and obesity for eating disorders at their index clinical evaluation using questionnaires such as SCOFF, EDE-Q, or QEWP-R.	R
1-08	Use primary care interventions, namely behavioral counseling, health education and awareness, and dietary modification alone or in conjunction with lifestyle and pharmacological therapies, to effectively manage obesity.	R
1-09	Use educational training programs for PCPs to address gaps in skills, knowledge, and attitudes necessary to effectively manage people living with obesity.	R

16 Table 1. Recommendations for the approach to diagnosing obesity.

 $17 \qquad {\sf SR}, {\sf Strongly\ recommend}; {\sf R}, {\sf Recommend}; {\sf Su}, {\sf Suggest}; {\sf and\ DND}, {\sf Do\ not\ do}.$

1 LIFESTYLE MODIFICATIONS

2 Lifestyle-based interventions constitute the cornerstone of obesity management to improve health. It is an 3 umbrella phrase encompassing a diverse array of non-pharmacological interventions that involve inducing a 4 sustained change in habits pertaining mainly to diet and physical activity for risk factor modification and improved survival outcomes. They are recommended as the first-line treatment modality as a standalone 5 therapy or in conjunction with pharmacological/surgical interventions.⁴³ Implementing high-frequency 6 counseling (≥16 sessions in 6 months) focusing on nutritional changes, physical activity, and behavioral 7 8 strategies can help achieve long-term energy deficit goals. Our group's recommendations for lifestyle 9 modification-based interventions targeted at weight loss and maintenance are listed in Table 2.

10

11 DIETARY INTERVENTIONS

12 Calorie-restriction through dietary regulation can achieve a net-negative energy balance required for 13 triggering weight loss, but may also be associated with increases in hunger. An energy intake reduction of 14 500-750 Kcal per day can manifest in an initial weight loss of 0.5–1.0 kg (1.0–2.2 lbs) per week, or 2-3 kg 15 (4.4–6.6 lbs) a month, not accounting for interpersonal variability. Weight loss does not continue indefinitely 16 despite continuous calorie restriction.

17 The Mediterranean Diet (MD) inspired by traditional eating habits in Mediterranean countries, emphasizes 18 plant-based foods (fruits, vegetables, legumes, whole grains, nuts, and extra virgin olive oil), moderate intake 19 of fish and dairy, and limited consumption of red meat. It is deemed as most effective at not only inducing 20 weight loss⁴⁴ but at maintaining 5-10% weight loss it over prolonged periods, with or without physical activity.⁴⁵ 21 Poulimeneas D and colleagues recruited participants from the MedWeight study and adherence to MD was 22 assessed among them. The study reported that the subjects adherent to the MD were two-times more likely 23 to maintain weight loss of 5-10% than their non-adherent counterparts.⁴⁵

The dietary approaches to stop hypertension (*DASH*) diet has demonstrated efficacy in inducing and maintain weight loss as well, and is recommended as one of the first-line interventions for individuals with obesity suffering from hypertension. A meta-analysis underscored an additional -1.4 kg weight loss among the cohort consuming DASH diet over other low-energy diets⁴⁶.

Intermittent Fasting (IF) diets entail alternating between 12-20 hours long periods of fasting and unrestricted eating. The 16:8 method (fasting 16 hours a day followed by an 8 hour eating window) and fasting for 24 hours twice a week (the 5:2 method) are some of the most commonly adopted approaches for dieters practicing IF. In a meta-analysis conducted by Almabruk and colleagues,⁴⁷ the IF fasting group experienced weight reductions ranging from 2 to 6 kg, and BMI decreased between 1 and 4 kg/m² over 1.5 and six months, respectively.

High-protein (HP) diets include consuming ≥1.6 g of protein per kg of body weight or obtaining ≥25% of
 calories from protein.

Low-fat (LF) diets prescribe deriving less than 30% of daily calorie requirement from fats. While seldom used as a standalone therapy, LF diets are often combined with calorie restriction for optimal effect. The Diabetes Prevention Program (DPP)⁴⁸ and Look AHEAD trial⁴⁹ provide a robust evidence base for the efficacy of LF-diets in reducing BMI, body fat mass, and comorbidities associated with obesity, including diabetes. Astrup et al.⁵⁰ reported a mean weight loss of 3.2 kg (CI: 1.9-4.5 kg) in the LF-diet group compared to the control in their meta-analysis of 16 RCTs.

Low-carb diets (LCDs) and calorie-restricted diets (CRDs): Low-carb diets are further classified into very low, low, moderate, or high-carb diets based on per diem carbohydrate load (very low; 20-50 g/day, low; ≤130 g/day). Ketogenic diets are a type of very low-carb diet. They work by depleting the body's glycogen stores to use fat stores as the primary source for energy production through the generation of ketones. Although effective at inducing weight loss and improving glycemic control in diabetics, the LCDs have been linked to greater odds of cardiovascular morbidity and mortality.⁵¹ Thus, warranting caution and careful patient selection when identifying candidates for LCD-based weight loss intervention.

Calorie-restricted diets are an effective recourse for achieving 5-10% weight loss. Combined with increased proportions of protein and dairy intake, they may reduce body fat percentage, total cholesterol (TC), and lowdensity lipoprotein-cholesterol (LDL-c) levels. Intermittent fasting has gained traction as a potent means for achieving calorie restriction. In a randomized controlled trial (RCT), Sun J. and colleagues uncovered the synergistic weight loss effect achieved by combining LCDs with CRDs. Compared to those in the calorierestricted (CR) only group, participants in the LCD plus CR group lost 55% more body mass index (BMI).⁵²

Wycherly et al.⁵³ performed a meta-analysis of 95 studies, wherein they established modest decreases in body weight (-0.79 kg; 95% CI: -1.50 to -0.08) and body fat mass (-0.87 kg; 95% CI: -1.26 to -0.48 kg) in the group consuming HP diets in comparison to the low-fat, low-carbohydrate, energy-restricted standard protein diet group. In summary, this consensus statement

In conclusion, this consensus statement recognizes that there is no universally superior dietary strategy for the management of obesity. Rather, the optimal dietary approach is one that is tailored to the individual's preferences, cultural context, and lifestyle, and that supports long-term adherence. Notably, the limited longterm success of most diets is less often due to the specific macronutrient composition or structure of the diet itself, and more commonly attributable to challenges with sustained adherence over time.

29

30 PHYSICAL ACTIVITY

Exercise constitutes the second most important piece of the lifestyle interventions puzzle directed at inducing a weight loss of 5-10%. The duration of exercise training and weight loss through visceral fat reduction exhibit a dose-response relationship.⁵⁴ Although there exists a great deal of heterogeneity in the literature, with regard to the duration of physical activity per week, the general consensus is that for patients with obesity, ≥ 150 minutes of exercise training a week is associated with weight loss induction⁸ and maintenance, in addition to heralding an improvement in cardiovascular outcomes in the long run, although a reduction in cardiovascular mortality has not been shown. According to the American College of Sports Medicine, 150-

- 1 225 min and 225-400 min of aerobic exercise per week were associated with 2 to 3 kg and 5 to 7.5 kg of
- 2 weight loss, respectively, although long-term maintenance beyond 3 years remains a challenge. ⁵⁵
- Willis et al.⁵⁶ concluded that aerobic training demonstrated a more significant decrease in total body fat content than resistance training. They also demonstrated that combining resistance training with aerobic exercise did not lead to incremental weight loss.
- 6

7 LONG-TERM WEIGHT LOSS MAINTENANCE STRATEGIES:

Physical activity is a strong predictor of long-term weight loss maintenance, independent of diet and caloric
restriction. The National Weight Control Registry (NWCR) recommends 60 minutes of moderate-intensity
exercise per day for long-term weight loss maintenance.⁵⁷

In an RCT conducted by Jakicic and colleagues,⁵⁸ 275 min/week of physical activity when combined with restricted caloric intake was found to be associated with the highest odds of long-term weight loss maintenance of 5-10%.

14

15 Table 2. Recommendations for lifestyle interventions for obesity management.

No.	Guideline Statement	Level of Recommendation
2-01	Use counseling, multicomponent psychological interventions, and comprehensive lifestyle interventions, including calorie restriction, physical activity, and individualized medical nutrition therapy for achieving and maintaining weight loss in adults with overweight and obesity.	SR
2-02	Recommend comprehensive lifestyle interventions for individuals with overweight or obesity by a) setting personalized weight loss goals, targeting a 5-10% reduction in body weight for most adults, including those living with hypertension, dyslipidemia, or Metabolic dysfunction-associated steatotic liver disease (MASLD), 5-7% for those with pre-diabetes, and 5-15% for individuals with diabetes or b) adopting evidence-based dietary patterns such as the Mediterranean, DASH, or intermittent energy restriction diets, higher-protein calorie-restricted diets, and programs like the Diabetes Prevention Program and Look AHEAD for managing obesity in individuals with diabetes, and c) engaging in regular physical activity with an initial goal of achieving 150 minutes per week of aerobic exercise or strength training two to three times weekly, eventually increasing to 300 minutes per week or \geq 2,000 kcal/week expenditure for \geq 5% weight loss.	SR
Resources somewhat or severely limited	Use implementing strategies such as the WHO's Global School Health Initiative, governmental policy-based interventions (i.e., Mexico's sugar tax), the 'Eat More Color' initiative for promoting fruit and vegetable consumption in the Caribbean, and the Pan-American Health Organization's (PAHO) 'Get Moving' campaign for combating obesity with increased physical activity, for obesity management when resources are limited.	

2-03	Use Vitamin D supplementation of 800-1,000 IU/d in patients with obesity undergoing weight loss.	Su
2-04	Recommend participation in long-term (> 1 year) maintenance programs to increase the likelihood of weight loss maintenance.	Su
2-05	The short-term (3-5 months long) use of a low-calorie diet (LCD) followed by stepped food reintroduction is beneficial for long-term weight loss maintenance and glycemic control.	R
2-06	Ensure long-term follow-up after weight loss, including face-to-face consultations or telephone calls, as a family centered approach has a positive impact on maintaining weight loss outcomes of 5%.	R
2-07	Use internet-based mobile apps as well as offline diet and nutritional education sessions to allow learning of nutrition knowledge and skills.	R
Resources somewhat limited	Use SMS-based health promotion programs, toll-free services where users can dial- in and seek health promotion guidance, educational radio broadcasts, television programs with instructional videos and promote guideline documents when use of more costly approaches is not possible.	
Resources severely limited	When network connectivity and mobile phone coverage is limited, use educational pamphlets, door-to-door obesity awareness and management campaigns, and consider the establishment of community health centers with health agents trained in obesity counselling and treatment.	
2-08	Adopt interventions that use technology (e.g., wearables) to increase reach to larger numbers of people asynchronously as a potentially viable lower-cost intervention in a community-based setting.	R
Resources somewhat or severely limited	Consider using low-cost wearables (Xiaomi Mi Band, Fitbit Inspire etc.), which are readily available in low-to-middle-income regions, and have built-in step counters, energy expenditure calculations, heart rate, and sleep monitoring, as alternatives.	

- 2
- 3

4 PHARMACOLOGICAL TREATMENT

Recommendations pertaining to optimal pharmacotherapeutic interventions for obesity management are
listed in **Table 3**. Appropriate doses for relevant drugs are listed in the **Supplementary Table 1**.

7

8 GLP-1RA–BASED THERAPIES

In the last decade, a new class of highly efficacious medications called nutrient-stimulating hormone (NuSH)
therapies has emerged. FDA-approved NuSH-based therapies include liraglutide, semaglutide, and
tirzepatide.

12 a) Liraglutide

13 Liraglutide, a GLP-1 receptor agonist (RA) is approved for chronic weight management in adults with a BMI

of 30 kg/m² or at least 27 kg/m² if at least one weight-related comorbid condition is present. It binds to GLP-

15 1 receptors in the pancreatic β-cells, increasing intracellular cyclic AMP (cAMP) and triggering endogenous

insulin release and appetite suppression. Dosing begins at 0.6 mg daily for one week and is then titrated up 1 weekly at 0.6 mg intervals until the recommended dose of 3 mg daily is reached. LEADER⁵⁹. Satiety and 2 Clinical Adiposity- Liraglutide Evidence in individuals with and without diabetes (SCALE)⁶⁰; SCALE 3 Maintenance⁶¹; SCALE Diabetes⁶²; and SCALE Sleep Apnea⁶³ were among the most prominent RCTs 4 evaluating liraglutide's safety and efficacy profiles. A meta-analysis⁶⁴ revealed that liraglutide produced a 5 mean 5.2 kg placebo-subtracted weight loss at 1 year, with 63% of participants achieving a \geq 5% weight loss, 6 7 inclusive of 34% of participants who lost \geq 10% of initial weight. Weight loss of 7% was maintained for 3 years in the SCALE Prediabetes study.65 8

9 Following the expiry of patents for liraglutide in 2024, third-party manufacturers are producing generic 10 variants of standalone and compounded liraglutide-containing drugs. This development is expected to 11 increase accessibility to liraglutide by decreasing the total cost incurred in addition to bolstering availability, 12 especially in the Western hemisphere.

13 b) Semaglutide

Semaglutide, another GLP-1RA, works by up-regulating the downstream effects of GLP-1 receptor 14 activation.⁶⁶ Once-weekly subcutaneous semaglutide 1.0mg was approved by the FDA in 2017 and the 15 European Medicines Association in 2018 for the treatment of type 2 diabetes.⁶⁷ In 2021, the FDA approved 16 17 2.4 mg once weekly semaglutide for treating obesity in adults. Semaglutide Treatment Effect in People 18 with obesity (STEP) was the first global program to evaluate semaglutide 2.4 mg once weekly for weight management. STEP 1⁶⁸ was the first trial to show the weight loss benefit associated with semaglutide. It ran 19 20 for 68 weeks; results were a significant body weight reduction of 16% compared to placebo. STEP 2⁶⁹ 21 compared semaglutide 2.4mg vs 1.0mg with placebo. The 2.4mg dose cohort had the highest 9.6% of 22 baseline body weight loss compared to the 1.0mg group that experienced 7% of baseline body weight loss. **STEP 3**⁷⁰ showed that including intensive lifestyle therapy with semaglutide did not affect weight loss as the 23 weight loss in the drug plus intensive lifestyle arm was 16%, the same as STEP 1, which did not have an 24 intensive lifestyle component. **STEP 4**⁷¹ revealed that discontinuing semaglutide resulted in weight regain, 25 26 while continuing semaglutide beyond 20 weeks resulted in 16-18% weight loss. **STEP 5**⁷² was the first longterm study that ran for 104 weeks and corroborated the findings of the previous studies, and showed how 27 increased duration of treatment resulted in maintenance of the 16% weight loss achieved at 1 year. No 28 weight regain was observed when the medication was continued. **STEP 8**⁷³, a phase 3 trial, compared once-29 30 weekly subcutaneous semaglutide (2.4 mg) with once-daily liraglutide (3.0 mg) in adults with overweight or 31 obesity without diabetes mellitus. Semaglutide resulted in significantly greater weight loss (-15.8%) 32 compared to liraglutide (-6.4%). Semaglutide also showed higher odds of achieving $\geq 10\%$, $\geq 15\%$, and $\geq 20\%$ weight loss. Both treatments had similar rates of gastrointestinal adverse events. The recently concluded 33 **STEP UP**⁷⁴ trial compared weekly 7.2mg semaglutide to 2.4mg semaglutide and placebo. People treated 34 with semaglutide 7.2mg achieved a superior weight loss of 20.7% after 72 weeks compared to a reduction of 35 36 17.5% with semaglutide 2.4mg and 2.4% with placebo. In addition, 33.2% of those who received semaglutide 7.2mg achieved a weight loss of 25% or more after 72 weeks, compared to 16.7% with semaglutide 2.4mg 37 and 0.0% with placebo. The **SELECT** study⁷⁵ showed weight maintenance for 4 years without any regain, 38

1 provided the medication was continued. This is also the only RCT in patients with obesity without diabetes

2 that has shown a reduction in major adverse cardiovascular events when an intentional weight loss strategy

3 was used.⁷⁵

4 Cardiovascular studies with semaglutide:

The SELECT⁷⁵ trial was a large, randomized, placebo-controlled cardiovascular outcomes trial (CVOT) that 5 enrolled 17,604 patients with established atherosclerotic cardiovascular disease (ASCVD) and either obesity 6 or overweight (BMI \geq 27 kg/m²) but without diabetes. Over a mean follow-up of 39.8 months, weekly 7 8 subcutaneous semaglutide 2.4 mg significantly reduced the incidence of major adverse cardiovascular events (MACE), a composite of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke, by 9 10 20% compared to placebo (HR 0.80; 95% CI: 0.72 to 0.90; P<0.001). Although hazard ratios for 11 cardiovascular death (HR 0.85; 95% CI: 0.71 to 1.01) and the composite of cardiovascular death or heart 12 failure events (HR 0.82; 95% CI: 0.71 to 0.96) favored semaglutide, these endpoints did not meet the required 13 significance thresholds in hierarchical testing.

STEP-HFpEF⁷⁶ & STEP-HFpEF DM⁷⁷ showed that treatment with semaglutide led to a reduction in heart failure events, NT-proBNP and CRP levels, as well as an improvement in 6-minute walking distance (6MWD) and Kansas City Cardiomyopathy (KCCQ) scores in patients with confirmed HFpEF and the obesity phenotype, over one year, compared to placebo.⁷⁸

18 c) Tirzepatide

Tirzepatide is a dual GLP-1 RA/Glucose-dependent insulinotropic polypeptide (GIP) agonist that works by modulating insulin release and increasing adiponectin levels. In the SURPASS 1-5 trials, different dosages of tirzepatide (5 mg, 10 mg, and 15 mg) demonstrated significant weight reduction in patients with obesity and type 2 diabetes mellitus (T2DM), especially when compared to placebo (SURPASS 1), semaglutide 1 mg (SURPASS 2), insulin degludec (SURPASS 3), insulin glargine (SURPASS 4), and placebo+ insulin glargine (SURPASS 5). The overall weight loss ranged from 7.6 kg, 10.7 kg, to 12.9 kg with tirzepatide 5 mg, 10 mg, and 15 mg, respectively

The **SURMOUNT 1-4 trials** were designed to evaluate the effectiveness and safety of Tirzepatide as an adjunct to lifestyle interventions compared to a placebo in patients with obesity, with or without T2DM. **SURMOUNT 1:** Compared tirzepatide 5mg vs 10mg vs 15mg vs placebo in patients without diabetes. At the end of 72 weeks, 5mg, 10mg, 15mg groups experienced a -15%, -19.5%, -20.9% weight reduction. Placebo had -3.1%. The SURMOUNT 1 extension study in patients with prediabetes showed that weight loss of more than 20% was maintained for 3 years with tirzepatide.

SURMOUNT 2: Patients with diabetes were included. Tirzepatide 10mg, 15mg and placebo were compared
 for 72 weeks. Mean change in body weights at the end were -12.8%, -14.7%, -3.2%, respectively.

SURMOUNT 3: Patients were subjected to an intensive lifestyle intervention and only those that lose >_5% weight on it were randomized to either tirzepatide (10 or 15mg) and placebo. Mean weight change at the of 72 weeks was -18.4% for tirzepatide while the group treated with the intensive lifestyle intervention and placebo, had a weight increase of 2.5%.

- SURMOUNT 4: Started as an open-label trial. Participants experienced a 20.9% weight loss. Then they
 were randomized. Those who switched to placebo experienced a 14% weight gain, whereas those who
 continued with tirzepatide lost another 5.5% of their initial weight.
- SURMOUNT-OSA⁷⁹ investigated the utility of tirzepatide in patients with obstructive sleep apnea (OSA).
 They found that among persons with moderate-to-severe obstructive sleep apnea and obesity, tirzepatide
 reduced the AHI, body weight, hypoxic burden, high-sensitivity C-reactive protein (hsCRP) concentration,
- 7 and systolic blood pressure and improved sleep-related patient-reported outcomes.
- 8 The **SYNERGY-NASH**⁸⁰ trial revealed that in patients with MASH and moderate or severe fibrosis, treatment 9 with tirzepatide for 52 weeks was more effective than placebo with respect to resolution of MASH without 10 worsening of fibrosis.
- 11

12 <u>GLP-1RA based therapies in resource-limited settings:</u>

Compounded products of GLP-1RA based therapies are increasingly being used as cost-effective
 alternatives in resource-limited settings. However, data on their long-term safety and efficacy are limited.
 Moreover, a lack of standardization in manufacturing processes leads to differences in safety and efficacy
 outcomes.

17

18 SGLT2 INHIBITORS

19 SGLT2-inhibitors are not drugs for treatment "of obesity", but they are effective medicines for patients "with obesity" and cardio-renal-metabolic disease. SGLT2 inhibitors work by blocking the re-uptake of sodium and 20 glucose in the proximal convoluted tubule- a mechanism that is thought to underlie its weight loss effects. 21 22 Although they cause minimal weight loss and are not considered weight loss agents per se, they are very 23 effective in improving outcomes in chronic conditions that commonly co-exist with obesity, including heart failure and chronic kidney disease. Mazidi and colleagues⁷², in their meta-analysis of 43 RCTs evaluating 24 25 the efficacy and safety profile of SGLT2 inhibitors in managing diabetes-related comorbidities, reported a 26 weighted mean difference of -1.8 kg (95% CI: -2.1 to -1.6) between the SGLT2i group and those receiving placebo. In a meta-analysis of 15 randomized controlled trials, Usman and colleagues⁸¹ demonstrated 27 significantly reduced risks for HF-related hospitalization and cardiovascular mortality in patients with HF, type 28 29 2 diabetes, chronic kidney disease, and atherosclerotic cardiovascular disease.

30

31 ORLISTAT

Orlistat works by inhibiting the lipase mediated breakdown of fats, thus decreasing fatty uptake from the gut. One of the earliest investigations of orlistat-mediated weight loss was conducted by Zavoral⁸², who performed a pooled analysis of data from five RCTs and reported that at the one year mark, patients taking orlistat 120 mg thrice daily, experienced significantly greater weight loss than those on a placebo, with an average reduction of 9.2% compared to 5.8%. Additionally, a higher percentage of orlistat-treated patients achieved weight loss of over 5% and over 10% of their initial body weight, compared to those on placebo (69.6% vs. 51.9%; and 42.1% vs. 22.7%, respectively). Since then, several RCTs⁸³⁻⁸⁵ and prospective observational 1 studies have detailed more comprehensive accounts of orlistat's efficacy in managing obesity and preventing

- 2 the development of as well as treating its co-morbidities namely, dyslipidemias, MAFLD and diabetes.
- 3

4 PHENTERMINE / TOPIRAMATE

5 Phentermine, an adrenergic stimulant, induces weight loss by appetite suppression. The application is oral once daily. Although the exact mechanisms underlying topiramate's role in inducing weight loss have not 6 been elucidated, it is hypothesized to reduce total body fat content.⁸⁶ The EQUIP-trial⁸⁷ showed a significant 7 decrease in body weight within 12 months (10.9% of baseline weight) in the group receiving phentermine / 8 topiramate (15mg/92mg) when compared to matched controls receiving placebo (1.6% of baseline weight). 9 Licensed for use as a weight loss regimen in the U.S since 2012, it initially failed to receive centralized 10 11 authorization in Europe due to concerns over the cardiovascular effects of protracted phentermine use. 12 Today it is approved in Europe in more than 15 countries through the decentralized approval pathway. This 13 combination is contraindicated in patients with a history of significant cardiovascular disease and pregnant 14 women.

15

16 NALTREXONE / BUPROPION

Naltrexone / bupropion induce weight loss by increasing signaling from the pro-opiomelanocortin (POMC) 17 neurons in the hypothalamus. Consequently decreasing appetite by blunting the hyperphagia pathways in 18 the mesolimbic system.⁸⁸ The recommended dose for obesity treatment is a total of 32 mg naltrexone and 19 360 mg bupropion.⁸⁹ The Contrave Obesity Research program encompasses a series of four RCTs (COR-20 1⁹⁰, COR-II⁹¹, COR-DM⁹² and COR-BMOD⁹³) that form the major body of literature depicting the efficacy of 21 22 naltrexone/ bupropion combination drug in reducing body fat percentage and improving lipid chemistry in the recipients of this therapy. A history of hypertension, depression, breastfeeding or active substance abuse 23 24 precludes the use of naltrexone/ bupropion.94

25

26 LISDEXAMFETAMINE

A stimulant medication used very rarely for treating obesity in children and adolescents with underlying eatingdisorders.

29

30 THE FUTURE OF ANTI-OBESITY DRUG-BASED THERAPY

31

Novel drug therapies acting centrally (setmelanotide; melanocortin 4 [MC4] receptor activator, velneperit; neuropeptide Y antagonist, zonisamide-bupropion; combination drug comprised of sodium and T-type calcium channel blocker as well as norepinephrine-dopamine reuptake inhibitor, and cannabinoid type-1 receptor blockers), and peripherally including amylin mimetics (davalintide), dual action GLP-1/glucagon receptor agonists (oxyntomodulin), pramlintide-metreleptin (amylin and leptin analogues working by slowing gastric emptying and inducing early satiety), beloranib (methionine aminopeptidase 2 inhibitors), and novel

- 1 anti-obesity vaccines (ghrelin, somatostatin, adenovirus36) are going to shape the future of anti-obesity
- 2 pharmacotherapies.⁹⁵
- 3
- 4 Table 3. Recommendations for pharmacological interventions for weight loss.

No.	Guideline Statement	Level of Recommendation
3-01	Use the GLP-1 RA-based therapies semaglutide or tirzepatide for weight loss in patients with diabetes or in individuals with obesity.	SR
3-02	The time for initiation of semaglutide or tirzepatide may be individualized, based on obesity-related complications, patient preference, and cost. Failure of lifestyle modification should not be a criterion for initiation of pharmacological therapy.	Su
3-03	Use semaglutide as the weight-loss agent of choice in patients with obesity who have established ASCVD.	SR
3-04	In patients with heart failure and preserved ejection fraction, use semaglutide or tirzepatide to achieve weight loss and improvement in heart failure symptoms and quality of life.	SR
3-05	When semaglutide or tirzepatide cannot be used, consider using one of the other weight loss agents: liraglutide, phentermine / topiramate, orlistat, naltrexone / bupropion, exenatide or lisdexamfetamine	Su
Resources somewhat limited	Consider orlistat and/or naltrexone/bupropion as alternative weight loss agents.	
Resources somewhat limited	Consider lower-cost GLP-1 RAs (such as liraglutide) and compounded GLP-1 RAs as an alternative to semaglutide and tirzepatide.	
3-06	Avoid phentermine / topiramate due to questionable cardiovascular risk, especially in patients with established cardiovascular disease.	DND
3-07	Use SGLT2 inhibitors to improve cardiovascular disease outcomes in patients with obesity and HF, chronic kidney disease, and/or type-2 diabetes mellitus.	SR
3-08	Re-evaluation and dose adjustment of weight loss therapies should be conducted to prevent therapeutic inertia.	Su

- 6
- _
- 7 8
- 9 BARIATRIC SURGERY

10 Since its inception, 50 years ago, bariatric surgery has become an effective treatment option for patients

11 with obesity, especially in the presence of complications such as diabetes mellitus, metabolic syndrome,

12 and metabolic dysfunction-associated steatotic liver disease (MASLD). The BRAVE trial⁹⁶ randomized

13 individuals with Metabolic Dysfunction-Associated Steatohepatitis (MASH) to lifestyle modifications plus

14 best medical care group or a bariatric surgery group. The trial concluded that bariatric-metabolic surgery is

15 more effective than lifestyle interventions and optimized medical therapy in the treatment of MASH.

- 1 Roux-en-Y gastric bypass, sleeve gastrectomy, endoscopic intragastric balloon, biliopancreatic diversion,
- 2 and gastric banding are among the routinely offered options for patients considering undergoing bariatric
- 3 surgery for achieving weight loss goals⁸. Recommendations pertaining to the use of bariatric surgery as a
- 4 treatment modality for obesity are listed in **Table 4**.

5 a) Roux-en-Y gastric bypass

6 This is the most widely adopted technique for performing bariatric surgery owing to its superior safety and

- 7 efficacy profile.⁹⁷ It induces weight loss by increasing signaling from the gut to the brain, including
- 8 hampering ghrelin release, increasing satiety hormones, bile acids and altering the gut microbiota.⁹⁸It
- should especially be considered in patients with BMI \ge 30 kg/m² and diabetes mellitus, hypertension,
- 10 hyperlipidemia or other CVD risk factors.⁹⁹
- 11

12 b) Sleeve gastrectomy

13 Sleeve gastrectomy is effective and comparable to slightly worse for weight loss, in comparison to the

- 14 Roux-en-Y bypass,^{100,101} but with a greater risk of developing gastroesophageal reflux disease (GERD) and
- 15 Barrett's esophagus, and the irreversible nature of the procedure.¹⁰⁰
- 16

17 c) Intragastric balloon (IGB) and banding

18 Abu Dayyeh et al.¹⁰² conducted an RCT to demonstrate that; when used in conjunction with lifestyle

- 19 interventions, adjustable IGB resulted in significant weight loss (15% in the aIGB group vs. 3% in the
- 20 control group, p<0.0001) which maintained for 6 months following balloon removal. Most other studies
- 21 suggested weight regain when the balloon is removed.

Gastric banding utilizes laparoscopic approach to modulate gastric filling. The overall weight loss effect is achieved by invoking the early satiety mechanisms. There are a number of well conducted RCTs showing the safety and superior efficacy of gastric banding in comparison to lifestyle changes. The only long-term RCT comparing Roux-en-Y gastric bypass with gastric banding reported significantly superior weight loss outcomes for the former.¹⁰³

27

28 d) Biliopancreatic Diversion with Duodenal Switch (BPD/DS)

- 29 The BPD/DS is another effective bariatric surgery procedure, characterized by a sleeve gastrectomy
- 30 followed by gastroileal and ileoileal anastomoses.¹⁰⁴ In a longitudinal analysis of the weight loss effects of
- this procedure by Sorribas and colleagues reported 15%, 18% and 18% initial body weight loss at 2, 5 and
- 32 10 year intervals.¹⁰⁵ In a meta-analysis estimating the efficacy of bariatric surgery procedures, Buchwald et
- 33 al., reported that the percentage of extra body weight lost (calculated as [preoperative BMI-current
- BMI)/(preoperative BMI-25] × 100) at 2-years of follow-up was the highest (73%) for the BPD/DS
- subgroup, followed by the gastric bypass (63%), gastroplasty (56%), and gastric banding (49%)
- 36 subgroups.¹⁰⁶

No.	Guideline Statement	Level of Recommendation
4-01	 Recommend bariatric surgery for: BMI ≥30 kg/m² in select cases where the patient expresses a desire for surgery and has failed trial with novel weight loss therapies such as GLP-1 RA-based drugs. BMI ≥35 kg/m² and a history of diabetes, MASLD or metabolic-dysfunction associated steatohepatitis(MASH) or high cardiovascular event risk. BMI ≥40 kg/m² regardless of comorbidities. 	SR
4-02	Use lower BMI cut-offs should be used for Asians (of \geq 27.5 kg/m ²) and Asian Indians (BMI is >32.5 kg/m ² with complications, and BMI is >37.5 kg/m ² without comorbidity) populations when evaluating them for metabolic surgery eligibility.	Su
4-03	Consider bariatric surgery in children and adolescents BMI >120% of the 95th percentile and a major complication, or a BMI >140% of the 95th percentile.	Su
4-04	Consider long-term medical, behavioral and nutritional support in addition to screening for psychosocial and behavioral health changes for recipients of metabolic surgery.	Su
4-05	Monitor individuals who have undergone metabolic surgery for insufficient weight loss every 6-12 months.	Su
4-06	Use bariatric surgery for select patients with obesity and GERD, hiatal hernia, Barrett's esophagitis or concomitant PCOS.	R

3

4 CONSIDERATIONS REGARDING SPECIAL POPULATIONS

5 a) Children and young adolescents

A forecasting study from the Global Burden of Disease Study 2021¹⁰⁷ examined the prevalence, trends, and 6 future projections of overweight and obesity in children and adolescents across 180 countries from 1990 to 7 2021, with projections extending to 2050. The findings revealed that between 1990 and 2021, the global 8 prevalence of overweight and obesity in youth doubled, while obesity alone tripled. In 2021, an estimated 9 93.1 million children (5-14 years) and 80.6 million adolescents (15-24 years) were living with obesity. The 10 highest prevalence was noted in North Africa, the Middle East, and parts of Oceania, with the greatest 11 12 increases observed in Southeast Asia, East Asia, and Oceania. By 2050, obesity rates are expected to rise further, particularly in South Asia, surpassing historical trends globally. As with adults, effective weight 13 management in children and adolescents requires more than dietary changes alone; it should include 14 15 physical activity and psychosocial support, with dietary strategies tailored to the child's preferences, comorbidities, food restrictions, and personal context as part of a comprehensive care plan..¹⁰⁸ 16

17

18 Table 5. Recommendations for managing obesity in children and young adolescents.

No.	Guideline Statement	Level of Recommendation
5-01	Do not use very-low-energy diets as a long-term strategy for managing obesity in children.	R

5-02	Combine a calorie-restricted diet (CRD) with at least 60 min of moderate-to- vigorous physical activity per day for children and adolescents with obesity.	R
5-03	Encourage children to engage in a minimum of 20 minutes (preferably 30) of moderate-to-vigorous physical activity daily with a target of achieving 60 minutes of such activity.	R
5-04	Ensure family involvement in dietary changes for children with obesity, particularly for younger children.	SR
5-05	Use GLP-1 RA (liraglutide) in conjunction with lifestyle interventions for managing obesity in children under 12 years.	R
5-06	In children older than 12 years of age, liraglutide and semaglutide may be used for inducing weight loss.	R
5-07	In areas with limited availability of GLP-1 RAs, orlistat may be used to manage obesity in children older than 12 years. If prescribed, it should be a 6- to 12-month trial, with regular monitoring for effectiveness, adherence, and side effects.	R
5-08	Discontinue weight-loss medications if there is no improvement after 12 months.	R
5-09	Consider bariatric surgery in children aged 13 years or older, and adolescents with a BMI >120% of the 95th percentile and a major complication, or a BMI >140% of the 95th percentile.	Su
5-10	Bariatric surgery should only be considered for adolescents who have achieved or nearly achieved physiological maturity.	Su
5-11	Bariatric surgery must be performed in specialist centers with pediatric expertise and include preoperative and postoperative psychological support.	R

2

3 b) Pregnant females

The detrimental impact of gestational obesity on both maternal and fetal well-being has been well documented in the literature, making adequate weight control both in the antenatal period and during pregnancy of paramount importance. A holistic approach consisting of nutritional support, physical activity guidance, and supervision can optimize obesity management during pregnancy, improving health outcomes for both the fetus and the mother.¹⁰⁸

9

10 Table 6. Recommendations for managing obesity in pregnant females.

No.	Guideline Statement	Level of Recommendation
6-01	Encourage pregnant women with obesity to consume a nutritionally balanced diet, avoiding restrictive or very-low-energy diets during pregnancy.	Su
6-02	Offer behavioral change interventions including both nutrition and physical activity to pregnant and post-partum women.	SR
6-03	Encourage and support pregnant women with obesity who do not have contraindications to exercise during pregnancy to engage in at least 150 minutes per week of moderate-intensity physical activity.	Su
6-04	Screen for gestational diabetes in all pregnant women with obesity at the first antenatal visit and again at 24–28 weeks.	Su
6-05	Provide individualized dietary advice to pregnant women with obesity, considering cultural and economic factors.	Su

6-06	Support weight management by integrating physical activity and dietary interventions into antenatal care.	R
6-07	Advise against very-low-energy diets (<800 kcal/day) for pregnant women due to risks to fetal development.	R
6-08	Use metformin or liraglutide for managing PCOS in women with obesity.	SR
6-09	Weight-loss medications such as orlistat and GLP-1RA-based drugs liraglutide should not be used during pregnancy.	DND
6-10	Women of childbearing potential using weight-loss medications should use contraception and discontinue medication if pregnancy occurs.	Su
6-11	Bariatric surgery is not recommended during pregnancy; women planning pregnancy should avoid conception for at least 12–18 months post-surgery.	SR
6-12	Pregnancy after bariatric surgery requires specialist antenatal care, including nutritional monitoring and supplementation.	R
6-13	Provide long-term follow-up care for women with prior bariatric surgery, including assessments for micronutrient deficiencies post-pregnancy	Su

2

3 c) Obesity and psychiatric illnesses

4

5 Table 7. Recommendations for managing obesity in individuals with depression and eating disorders.

No.	Guideline Statement	Level of Recommendation
7-01	Consider Orlistat, liraglutide, and phentermine/ topiramate ER at initiation and low treatment doses or for managing obesity in patients receiving treatment for depression.	Su
7-02	Consider structured lifestyle therapy in combination with SSRIs for patients with obesity and concomitant eating disorders.	Su
7-03	Consider lisdexamfetamine or topiramate/bupropion containing drugs for treating obesity in patients with binge-eating disorder.	Su

6 SR, Strongly recommend; R, Recommend; Su, Suggest; and DND, Do not do.

7

8

9 CONCLUSION:

This consensus statement by the writing committee provides a comprehensive, consolidated summary of evidence-based recommendations pertinent to diagnosing and managing obesity across a diverse array of healthcare settings. While these guidelines serve as a framework for guiding disease management, it is imperative that clinicians utilize clinical reasoning to analyze implementation in the context of patient-specific factors, namely, race, comorbidities, genetic factors, as well as their symptoms, complications, adherence to recommendations, socio-cultural differences, financial limitations and access to treatment modalities, that might hamper individual-level adoption of the recommendations.

17

1 **REFERENCES**

- Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies.
 Lancet 363, 157-163 (2004).
- Rodgers, A., Woodward, A., Swinburn, B. & Dietz, W.H. Prevalence trends tell us what did not precipitate the
 US obesity epidemic. *The Lancet Public Health* 3, e162-e163 (2018).
- 6 3. Temple, N.J. The Origins of the Obesity Epidemic in the USA-Lessons for Today. *Nutrients* **14**(2022).
- 7 4. Rubino, F., et al. Definition and diagnostic criteria of clinical obesity. *The Lancet Diabetes & Endocrinology*.
- S. Cawley, J., et al. Direct medical costs of obesity in the United States and the most populous states. J Manag
 Care Spec Pharm 27, 354-366 (2021).
- Tsai, A.G., Williamson, D.F. & Glick, H.A. Direct medical cost of overweight and obesity in the USA: a
 quantitative systematic review. *Obes Rev* 12, 50-61 (2011).
- Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The
 Evidence Report. National Institutes of Health. *Obes Res* 6 Suppl 2, 51s-209s (1998).
- Garvey, W.T., et al. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF
 ENDOCRINOLOGY COMPREHENSIVE CLINICAL PRACTICE GUIDELINES FOR MEDICAL CARE OF PATIENTS WITH
 OBESITY. Endocr Pract 22 Suppl 3, 1-203 (2016).
- Marx, N., et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes:
 Developed by the task force on the management of cardiovascular disease in patients with diabetes of the
 European Society of Cardiology (ESC). European Heart Journal 44, 4043-4140 (2023).
- Grunvald, E., *et al.* AGA Clinical Practice Guideline on Pharmacological Interventions for Adults With Obesity.
 Gastroenterology 163, 1198-1225 (2022).
- Guidelines for medical nutrition treatment of overweight/obesity in China (2021). Asia Pac J Clin Nutr **31**,
 450-482 (2022).
- Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2024. *Diabetes Care* 47, S158-s178 (2024).
- Visseren, F.L.J., *et al.* 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. *Eur Heart* J 42, 3227-3337 (2021).
- Arnett, D.K., *et al.* 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report
 of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
 Circulation 140, e596-e646 (2019).
- Jain, R., *et al.* Canadian Cardiovascular Harmonized National Guideline Endeavour (C-CHANGE) guideline for
 the prevention and management of cardiovascular disease in primary care: 2022 update. *Cmaj* 194, E1460 e1480 (2022).
- Nelson, M.R., *et al.* 2023 Australian guideline for assessing and managing cardiovascular disease risk. *Med J Aust* 220, 482-490 (2024).
- 36 17. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease.
 37 *Kidney Int* 105, S117-s314 (2024).
- Whelton, P.K., et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the
 Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the
 American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
 Hypertension **71**, e13-e115 (2018).
- Mancia, G., et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the
 management of arterial hypertension of the European Society of Hypertension: Endorsed by the
 International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens 41, 18742071 (2023).
- Cusi, K., *et al.* American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and
 Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: CoSponsored by the American Association for the Study of Liver Diseases (AASLD). *Endocrine Practice* 28, 528562 (2022).
- Handelsman, Y., et al. DCRM Multispecialty Practice Recommendations for the management of diabetes,
 cardiorenal, and metabolic diseases. J Diabetes Complications 36, 108101 (2022).
- McDonagh, T.A., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart
 failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the
 European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of
- 55 the ESC. *European Heart Journal* **42**, 3599-3726 (2021).

- Atherton, J.J., *et al.* National Heart Foundation of Australia and Cardiac Society of Australia and New
 Zealand: Guidelines for the Prevention, Detection, and Management of Heart Failure in Australia 2018.
 Heart, Lung and Circulation 27, 1123-1208 (2018).
- Wharton, S., et al. Obesity in adults: a clinical practice guideline. *Canadian Medical Association Journal* 192, E875 (2020).
- Wang, T., Tan, J.-Y., Liu, X.-L. & Zhao, I. Barriers and enablers to implementing clinical practice guidelines in primary care: an overview of systematic reviews. *BMJ Open* 13, e062158 (2023).
- 26. Żukiewicz-Sobczak, W., et al. Obesity and poverty paradox in developed countries. Annals of Agricultural
 and Environmental Medicine 21, 590-594 (2014).
- 1027.Zhang, H.-D., et al. Semaglutide for the prevention of atrial fibrillation: A systematic review and meta-11analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 18, 103067 (2024).
- Verma, S., et al. Inflammation in Obesity-Related HFpEF: The STEP-HFpEF Program. J Am Coll Cardiol 84, 1646-1662 (2024).
- Ndumele, C.E., *et al.* A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular Kidney-Metabolic (CKM) Syndrome: A Scientific Statement From the American Heart Association. *Circulation* **148**, 1636-1664 (2023).
- Administration, U.S.F.D. FDA Approves First Treatment to Reduce Risk of Serious Heart Problems Specifically
 in Adults with Obesity or Overweight. (2024).
- 1931.Caleyachetty, R., et al. Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: a20population-based cohort study. Lancet Diabetes Endocrinol 9, 419-426 (2021).
- 2132.Rubino, F., et al. Joint international consensus statement for ending stigma of obesity. Nat Med 26, 485-49722(2020).
- 33. O'Brien, K.S., *et al.* The relationship between weight stigma and eating behavior is explained by weight bias
 internalization and psychological distress. *Appetite* **102**, 70-76 (2016).
- 25 34. Vartanian, L.R. & Porter, A.M. Weight stigma and eating behavior: A review of the literature. *Appetite* 102, 3-14 (2016).
- 27 35. Vallis, M., Piccinini-Vallis, H., Sharma, A.M. & Freedhoff, Y. Clinical review: modified 5 As: minimal
 28 intervention for obesity counseling in primary care. *Can Fam Physician* 59, 27-31 (2013).
- Romero-Corral, A., et al. Accuracy of body mass index in diagnosing obesity in the adult general population.
 International Journal of Obesity 32, 959-966 (2008).
- 37. Wang, J., et al. Asians have lower body mass index (BMI) but higher percent body fat than do whites:
 32 comparisons of anthropometric measurements. *The American Journal of Clinical Nutrition* 60, 23-28 (1994).
- 38. Deurenberg, P., Deurenberg-Yap, M. & Guricci, S. Asians are different from Caucasians and from each other
 in their body mass index/body fat per cent relationship. *Obes Rev* 3, 141-146 (2002).
- 3539.Karter, A.J., et al. Elevated rates of diabetes in Pacific Islanders and Asian subgroups: The Diabetes Study of36Northern California (DISTANCE). Diabetes Care **36**, 574-579 (2013).
- Samouda, H. & Langlet, J. Body fat assessment in youth with overweight or obesity by an automated
 bioelectrical impedance analysis device, in comparison with the dual-energy x-ray absorptiometry: a cross
 sectional study. *BMC Endocrine Disorders* 22, 195 (2022).
- 40 41. Deurenberg, P. Limitations of the bioelectrical impedance method for the assessment of body fat in severe
 41 obesity. *The American Journal of Clinical Nutrition* 64, 449S-452S (1996).
- 42. Ginde, S.R., *et al.* Air displacement plethysmography: validation in overweight and obese subjects. *Obes Res*43. **13**, 1232-1237 (2005).
- 44 43. Wilson, K. Obesity: Lifestyle Modification and Behavior Interventions. *FP Essent* **492**, 19-24 (2020).
- 45 44. Esposito, K., Kastorini, C.M., Panagiotakos, D.B. & Giugliano, D. Mediterranean diet and weight loss: meta-46 analysis of randomized controlled trials. *Metab Syndr Relat Disord* **9**, 1-12 (2011).
- 47 45. Poulimeneas, D., *et al.* Exploring the relationship between the Mediterranean diet and weight loss
 48 maintenance: the MedWeight study. *Br J Nutr* **124**, 874-880 (2020).
- 49 46. Soltani, S., Shirani, F., Chitsazi, M.J. & Salehi-Abargouei, A. The effect of dietary approaches to stop
 50 hypertension (DASH) diet on weight and body composition in adults: a systematic review and meta-analysis
 51 of randomized controlled clinical trials. *Obes Rev* 17, 442-454 (2016).
- Almabruk, B.A., *et al.* The Role of Intermittent Fasting on Metabolic Syndrome: A Systematic Review and
 Meta-Analysis. *Cureus* 16, e71623 (2024).
- 5448.The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care 25, 2165-217155(2002).

- 49. Salvia, M.G. The Look AHEAD Trial: Translating Lessons Learned Into Clinical Practice and Further Study.
 Diabetes Spectr **30**, 166-170 (2017).
- Astrup, A., Grunwald, G.K., Melanson, E.L., Saris, W.H. & Hill, J.O. The role of low-fat diets in body weight
 control: a meta-analysis of ad libitum dietary intervention studies. *Int J Obes Relat Metab Disord* 24, 1545 1552 (2000).
- Noto, H., Goto, A., Tsujimoto, T. & Noda, M. Low-carbohydrate diets and all-cause mortality: a systematic
 review and meta-analysis of observational studies. *PLoS One* 8, e55030 (2013).
- Sun, J., et al. The effect of dietary carbohydrate and calorie restriction on weight and metabolic health in
 overweight/obese individuals: a multi-center randomized controlled trial. BMC Medicine 21, 192 (2023).
- 53. Wycherley, T.P., Moran, L.J., Clifton, P.M., Noakes, M. & Brinkworth, G.D. Effects of energy-restricted high protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled
 trials. Am J Clin Nutr 96, 1281-1298 (2012).
- 54. Ohkawara, K., Tanaka, S., Miyachi, M., Ishikawa-Takata, K. & Tabata, I. A dose–response relation between
 aerobic exercise and visceral fat reduction: systematic review of clinical trials. *International Journal of Obesity* **31**, 1786-1797 (2007).
- Swift, D.L., *et al.* The Effects of Exercise and Physical Activity on Weight Loss and Maintenance. *Progress in Cardiovascular Diseases* 61, 206-213 (2018).
- Willis, L.H., et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or
 obese adults. J Appl Physiol (1985) 113, 1831-1837 (2012).
- S7. Catenacci, V.A., *et al.* Physical activity patterns in the National Weight Control Registry. *Obesity (Silver Spring)* 16, 153-161 (2008).
- Jakicic, J.M., Marcus, B.H., Lang, W. & Janney, C. Effect of Exercise on 24-Month Weight Loss Maintenance in
 Overweight Women. *Archives of Internal Medicine* 168, 1550-1559 (2008).
- S9. Marso, S.P., et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of
 Medicine 375, 311-322 (2016).
- Pi-Sunyer, X., et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. New
 England Journal of Medicine 373, 11-22.
- Wadden, T.A., *et al.* Weight maintenance and additional weight loss with liraglutide after low-calorie-diet induced weight loss: the SCALE Maintenance randomized study. *Int J Obes (Lond)* 37, 1443-1451 (2013).
- Bavies, M.J., *et al.* Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE
 Diabetes Randomized Clinical Trial. *Jama* **314**, 687-699 (2015).
- Blackman, A., et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive
 sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond) 40, 1310-1319 (2016).
- Khera, R., et al. Association of Pharmacological Treatments for Obesity With Weight Loss and Adverse
 Events: A Systematic Review and Meta-analysis. Jama **315**, 2424-2434 (2016).
- le Roux, C.W., et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight
 management in individuals with prediabetes: a randomised, double-blind trial. *Lancet* 389, 1399-1409
 (2017).
- Hinnen, D. Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. *Diabetes Spectr* **30**, 202-210 (2017).
- 41 67. Chao, A.M., Tronieri, J.S., Amaro, A. & Wadden, T.A. Semaglutide for the treatment of obesity. *Trends*42 *Cardiovasc Med* 33, 159-166 (2023).
- 43 68. Wilding, J.P.H., et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N Engl J Med 384,
 44 989-1002 (2021).
- 45 69. Davies, M., *et al.* Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes
 46 (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. *Lancet* **397**, 971-984
 47 (2021).
- Wadden, T.A., *et al.* Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral
 Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. *JAMA* **325**, 1403-1413 (2021).
- 71. Rubino, D., *et al.* Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss
 Maintenance in Adults With Overweight or Obesity: The STEP 4 Randomized Clinical Trial. *Jama* 325, 1414 1425 (2021).
- 54 72. Garvey, W.T., *et al.* Two-year effects of semaglutide in adults with overweight or obesity: the STEP 5 trial.
 55 *Nat Med* 28, 2083-2091 (2022).

- 73. Rubino, D.M., *et al.* Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults
 With Overweight or Obesity Without Diabetes: The STEP 8 Randomized Clinical Trial. *JAMA* 327, 138-150
 (2022).
- 4 74. Nordisk, N. Novo Nordisk A/S: Semaglutide 7.2 mg s.c. achieved 20.7% weight loss in the STEP UP obesity
 5 trial, and 18.7% regardless of treatment adherence. Vol. 2025 (Novo Nordisk, 2025).
- Figure 75. Lincoff, A.M., et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. New England
 Journal of Medicine 389, 2221-2232 (2023).
- Kosiborod, M.N., et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and
 Obesity. New England Journal of Medicine 389, 1069-1084 (2023).
- 10 77. Kosiborod, M.N., et al. Semaglutide in Patients with Obesity-Related Heart Failure and Type 2 Diabetes. New
 11 England Journal of Medicine **390**, 1394-1407 (2024).
- 12 78. Haykowsky, M.J., *et al.* Determinants of exercise intolerance in elderly heart failure patients with preserved
 13 ejection fraction. *J Am Coll Cardiol* 58, 265-274 (2011).
- 79. Malhotra, A., et al. Tirzepatide for the Treatment of Obstructive Sleep Apnea and Obesity. New England
 Journal of Medicine **391**, 1193-1205 (2024).
- 16 80. Loomba, R., et al. Tirzepatide for Metabolic Dysfunction-Associated Steatohepatitis with Liver Fibrosis. N
 17 Engl J Med **391**, 299-310 (2024).
- Usman, M.S., *et al.* Effect of SGLT2 inhibitors on heart failure outcomes and cardiovascular death across the
 cardiometabolic disease spectrum: a systematic review and meta-analysis. *Lancet Diabetes Endocrinol* 12,
 447-461 (2024).
- 21 82. Zavoral, J.H. Treatment with orlistat reduces cardiovascular risk in obese patients. *J Hypertens* 16, 2013 2017 (1998).
- Sjöström, L., *et al.* Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight
 regain in obese patients. European Multicentre Orlistat Study Group. *Lancet* 352, 167-172 (1998).
- 25 84. Zahmatkesh, A., Sohouli, M.H., Shojaie, S. & Rohani, P. The effect of orlistat in the treatment of nonalcoholic fatty liver in adolescents with overweight and obese. *Eur J Pediatr* 183, 1173-1182 (2024).
- Alanazi, J., et al. Significance of Orlistat in management of dyslipidemia, systolic blood pressure and body
 mass index. Eur Rev Med Pharmacol Sci 26, 8326-8332 (2022).
- 29 86. Cignarella, A., Busetto, L. & Vettor, R. Pharmacotherapy of obesity: An update. *Pharmacological Research* 30 169, 105649 (2021).
- Allison, D.B., *et al.* Controlled-release phentermine/topiramate in severely obese adults: a randomized
 controlled trial (EQUIP). *Obesity (Silver Spring)* 20, 330-342 (2012).
- Billes, S.K., Sinnayah, P. & Cowley, M.A. Naltrexone/bupropion for obesity: An investigational combination
 pharmacotherapy for weight loss. *Pharmacological Research* 84, 1-11 (2014).
- 3589.Tek, C. Naltrexone HCI/bupropion HCI for chronic weight management in obese adults: patient selection and36perspectives. Patient Prefer Adherence 10, 751-759 (2016).
- Greenway, F.L., *et al.* Effect of naltrexone plus bupropion on weight loss in overweight and obese adults
 (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* 376, 595-605
 (2010).
- 40 91. Apovian, C.M., *et al.* A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-41 related risk factors (COR-II). *Obesity (Silver Spring)* **21**, 935-943 (2013).
- 42 92. Hollander, P., et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy
 43 on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. *Diabetes*44 *Care* 36, 4022-4029 (2013).
- 45 93. Wadden, T.A., *et al.* Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to
 46 behavior modification: the COR-BMOD trial. *Obesity (Silver Spring)* 19, 110-120 (2011).
- 4794.Gazewood, J.D.B.K. Phentermine/Topiramate (Qsymia) for Chronic Weight Management. Vol. 2024 (AAFP,482014).
- 49 95. Srivastava, G. & Apovian, C.M. Current pharmacotherapy for obesity. *Nat Rev Endocrinol* **14**, 12-24 (2018).
- 96. Verrastro, O., *et al.* Bariatric–metabolic surgery versus lifestyle intervention plus best medical care in
 non-alcoholic steatohepatitis (BRAVES): a multicentre, open-label, randomised trial. *The Lancet* 401, 1786 1797 (2023).
- 53 97. Adams Ted, D., *et al.* Weight and Metabolic Outcomes 12 Years after Gastric Bypass. *New England Journal of* 54 *Medicine* **377**, 1143-1155.
- 98. le Roux, C.W. & Bloom, S.R. Why Do Patients Lose Weight after Roux-en-Y Gastric Bypass? *The Journal of Clinical Endocrinology & Metabolism* **90**, 591-592 (2005).

1	99.	Abdeen, G. & le Roux, C.W. Mechanism Underlying the Weight Loss and Complications of Roux-en-Y Gastric Bypass Review Obes Surg 26 , 410-421 (2016)
2 3 4 5	100.	Biter, L.U., <i>et al.</i> Long-term effect of sleeve gastrectomy vs Roux-en-Y gastric bypass in people living with severe obesity: a phase III multicentre randomised controlled trial (SleeveBypass). <i>The Lancet Regional</i>
6 7	101.	Hedberg, S., et al. Comparison of Sleeve Gastrectomy vs Roux-en-Y Gastric Bypass: A Randomized Clinical Trial, JAMA Network Open 7, e2353141-e2353141 (2024).
, 8 9	102.	Abu Dayyeh, B.K., <i>et al.</i> Adjustable intragastric balloon for treatment of obesity: a multicentre, open-label, randomised clinical trial. <i>Lancet</i> 398 , 1965-1973 (2021).
10 11 12	103.	Angrisani, L., Cutolo, P.P., Formisano, G., Nosso, G. & Vitolo, G. Laparoscopic adjustable gastric banding versus Roux-en-Y gastric bypass: 10-year results of a prospective, randomized trial. <i>Surg Obes Relat Dis</i> 9 , 405, 412 (2012)
12	104	Sconingro N. et al. Bilionancreatic diversion World / Sura 22 , 936-946 (1998)
15 14 15	104. 105.	Sorribas, M., et al. Experience in biliopancreatic diversion with duodenal switch: Results at 2, 5 and 10 years.
16	106	Buchwald H et al. Bariatric surgery: a systematic review and meta-analysis. <i>Jama</i> 292 1724-1737 (2004)
10 17 18	100.	Ng, M., et al. Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050; a forecasting study for the Global Burden of Disease Study 2021. <i>The Lancet</i> 405 .
19		813-838 (2025).
20	108.	NICE. Overweight and obesity management. (2025).
21		
22		
24		
25		
26		
27		
28		
29		
30		
31 32 33	This do on Obe	cument has been authored by the "Writing Task Force of the iCARDIO-Alliance Global Implementation Guideline sity Management". The members of this task force will remain confidential until final publication of the document.
34 35 36 27	The do Guideli docume	cument was already reviewed by the "Peer Reviewer Group for the iCARDIO-Alliance Global Implementation ne on Obesity Management". The members of this task force will remain confidential until final publication of the ent.
38 39 40	This de Comme	ocument is now published as a draft document intended for public consultation & review. ents and suggestions for revision can be send together with supporting information to: public.review@icardio.org
40 41 42	The de	adline for receiving comments is the 26 th of May, 2025.
43 44 45 46	All com website and rec into cor	ments must be submitted via the dedicated comment form which can be downloaded from the Global Cardiology as well as from the iCARDIO Alliance website (<u>Home - iCARDIO Alliance</u>). Please use page, line, and/or table commendation numbers for reference in your commentaries as appropriate. Comments received will be taken nsideration but will not be published. Anonymous comments will be disregarded.
47		
48		
50		doi ora/10 4081/cardio 2025 71
50		doi.org/10.4001/0ardi0.2023.71

- **FIGURE 1**

Treatment Principles for Obesity

1 Supplementary Table

2 FDA & EMA Approved Dosages for Weight Loss Medications and SGLT2 Inhibitors

3

Drug Name	Approved Dosages
Weight Loss Medications	
Liraglutide	Initiate at 0.6 mg subcutaneously daily; increase by 0.6 mg weekly to a maintenance dose of 3.0 mg daily (for weight loss)
https://www.novonordisk.ca/content/dam/nncorp/ca/en/products/saxenda-product-monograph-24-april-2024.pdf	
Semaglutide	2.4 mg subcutaneously once weekly (for weight loss)
https://www.novonordisk.ca/content/dam/nncorp/ca/en/products/Wegovy-product-monograph.pdf	
Tirzepatide	5 mg, 10 mg, or 15 mg subcutaneously once weekly (for weight loss and diabetes)
https://pi.lilly.com/ca/mounjaro-ca-pm.pdf	
Orlistat	120 mg orally three times daily with fat containing meals (for weight loss)
https://www.medsafe.govt.nz/profs/datasheet/x/Xenicalcap.pdf	
Phentermine/Topiramate ER	Start at 3.75 mg/23 mg orally once daily; titrate to 7.5 mg/46 mg or up to 15 mg/92 mg once daily (for weight loss)
https://qsymia.com/patient/include/media/pdf/prescribing-information.pdf	
Naltrexone/Bupropion	32 mg naltrexone / 360 mg bupropion orally daily, divided into two doses (for weight loss)
https://bauschhealth.ca/wp-content/uploads/2023/08/Contrave-PM-E-2023-08-21.pdf	
Lisdexamfetamine	30-70 mg orally once daily (FDA-approved for binge eating disorder, not specifically for obesity)
https://www.medicines.org.uk/emc/product/14089/smpc	
SGLT2 inhibitors	
Empagliflozin	10 mg orally once daily; may increase to 25 mg once daily (for type 2 diabetes, heart failure, chronic kidney disease)
https://www.medsafe.govt.nz/profs/datasheet/j/jardiancetab.pdf	
Dapagliflozin	10 mg orally once daily (for type 2 diabetes, heart failure, chronic kidney disease)
https://www.medsafe.govt.nz/profs/datasheet/f/forxigatab.pdf	
Canagliflozin	100 mg orally once daily before the first meal; may increase to 300 mg daily (for type 2 diabetes)
https://www.medsafe.govt.nz/profs/datasheet/i/Invokanatab.pdf	
Ertugliflozin	5 mg orally once daily; may increase to 15 mg daily (for type 2 diabetes)
https://www.merck.com/product/usa/pi_circulars/s/steglatro/steglatro_pi.pdf	