Original Articles
30 December 2024
0
0
0
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Evaluating serum galectin-3 binding protein as a diagnostic and prognostic biomarker in pulmonary arterial hypertension: a comparative study

Authors

Background: Pulmonary arterial hypertension (PAH) is a severe condition with poor prognosis, characterized by elevated pulmonary artery pressure that leads to right ventricular failure. Identifying reliable biomarkers, such as Galectin-3 Binding Protein (Gal-3BP), could enhance PAH diagnosis and prognosis due to Gal-3BP's involvement in inflammation and fibrosis.
Methods: This prospective cohort study included 260 participants, 130 diagnosed with PAH and 130 healthy controls, from a tertiary care center. Serum Gal-3BP, NT-proBNP, and other biomarkers were measured alongside regular cardiopulmonary assessments. Right heart catheterization assessed hemodynamic parameters, and survival was analyzed using Kaplan-Meier curves over a 2-year period.
Results: PAH patients exhibited significantly higher serum Gal-3BP levels (5.34 ± 2.45 μg/mL) than controls (2.15 ± 0.95 μg/mL, p<0.001), correlating with elevated pulmonary artery pressure and reduced cardiac output (p<0.001). Kaplan-Meier analysis indicated lower survival rates for patients with Gal-3BP levels above the median (p<0.0001). Female patients averaged 58 years, with a 69% female study population.
Conclusions: Gal-3BP is significantly elevated in PAH patients, correlating with disease severity and predicting survival, positioning it as a promising biomarker for PAH diagnosis and prognosis. Future studies should examine Gal-3BP's role in therapeutic response and refine its clinical application.

Altmetrics

Downloads

Citations

Crossref
0
Scopus
0
1. Li M, Pan W, Tian D, et al. Diagnostic value of serum galectin-3 binding protein level in patients with pulmonary arterial hypertension. Curr Vasc Pharmacol 2024;22:67-77. DOI: https://doi.org/10.2174/0115701611268078231010072521
2. Haigh S, Bordán Z, Sellers HG, et al. Galectin 3 secretion in pulmonary arterial hypertension. Physiology 2023;38:5732582. DOI: https://doi.org/10.1152/physiol.2023.38.S1.5732582
3. Sun Y-Y, Wang L, Liu J-M, Yuan P. Reply to Sun et al.: circGASP: a new clinical biomarker for idiopathic pulmonary hypertension? Am J Respir Crit Care Med 2022;205:254. DOI: https://doi.org/10.1164/rccm.202108-1905LE
4. Jain A. High circulating plasma soluble receptor for advanced glycation end-products in early COVID-19-associated acute respiratory distress syndrome: pathophysiological significance? Am J Respir Crit Care Med 2022;205:254-6. DOI: https://doi.org/10.1164/rccm.202108-1896LE
5. Bouzina H, Hesselstrand R, Rådegran G. Higher plasma fibroblast growth factor 23 levels are associated with a higher risk profile in pulmonary arterial hypertension. Pulm Circ 2019;9:2045894019895446. DOI: https://doi.org/10.1177/2045894019895446
6. Tifi P, Pala B, Tempestini F, et al. 729 Biomarkers for early diagnosis of cardiac involvement in systemic sclerosis. Eur Heart J Suppl 2022;24:suac121-284. DOI: https://doi.org/10.1093/eurheartjsupp/suac121.284
7. Kostyunina DS, Pakhomov NV, Jouida A, et al. Transcriptomics and proteomics revealed sex differences in human pulmonary microvascular endothelial cells. Physiol Genomics 2024;56:194-220. DOI: https://doi.org/10.1152/physiolgenomics.00051.2023
8. Chida A, Sato H, Shintani M, et al. Soluble ST2 and N-terminal pro-brain natriuretic peptide combination - useful biomarker for predicting outcome of childhood pulmonary arterial hypertension. Circ J 2014;78:436-42. DOI: https://doi.org/10.1253/circj.CJ-13-1033
9. de Boer RA, Yu L, van Veldhuisen DJ. Galectin-3 in cardiac remodeling and heart failure. Curr Heart Fail Rep 2010;7:1-8. Erratum in Curr Heart Fail Rep 2012;9:163. DOI: https://doi.org/10.1007/s11897-010-0004-x
10. Mocumbi AO, Thienemann F, Sliwa K. A global perspective on the epidemiology of pulmonary hypertension. Can J Cardiol 2015;31:375-81. DOI: https://doi.org/10.1016/j.cjca.2015.01.030
11. Hemnes A, Rothman AMK, Swift AJ, Zisman LS. Role of biomarkers in evaluation, treatment and clinical studies of pulmonary arterial hypertension. Pulm Circ 2020;10;2045894020957234. DOI: https://doi.org/10.1177/2045894020957234
12. Carrigan P, Krahn T. Impact of biomarkers on personalized medicine. Handb Exp Pharmacol 2016;232:285-311. DOI: https://doi.org/10.1007/164_2015_24
13. Al-Naamani N, Palevsky HI, Lederer DJ, et al. Prognostic significance of biomarkers in pulmonary arterial hypertension. Ann Am Thorac Soc 2016;13:25-30. DOI: https://doi.org/10.1513/AnnalsATS.201508-543OC
14. Giansanti F, Capone E, Ponziani S, et al. Secreted Gal-3BP is a novel promising target for non-internalizing antibody-drug conjugates. J Control Release 2019;294:176-84. DOI: https://doi.org/10.1016/j.jconrel.2018.12.018
15. Gleissner CA, Erbel C, Linden F, et al. Galectin-3 binding protein, coronary artery disease and cardiovascular mortality: Insights from the LURIC study. Atherosclerosis 2017;260:121-9. DOI: https://doi.org/10.1016/j.atherosclerosis.2017.03.031
16. Lima T, Perpétuo L, Henrique R, et al. Galectin-3 in prostate cancer and heart diseases: a biomarker for these two frightening pathologies? Mol Biol Rep 2023;50:2763-78. DOI: https://doi.org/10.1007/s11033-022-08207-1
17. Cibor D, Szczeklik K, Brzozowski B, et al. Serum galectin 3, galectin 9 and galectin 3-binding proteins in patients with active and inactive inflammatory bowel disease. J Physiol Pharmacol 2019;70:95-104. DOI: https://doi.org/10.1093/ecco-jcc/jjy222.146
18. Rosenkranz S, Preston IR. Right heart catheterisation: best practice and pitfalls in pulmonary hypertension. Eur Respir Rev 2015;24:642-52. DOI: https://doi.org/10.1183/16000617.0062-2015
19. Razmjou S, Abdulnour J, Bastard JP, et al. Body composition, cardiometabolic risk factors, physical activity, and inflammatory markers in premenopausal women after a 10-year follow-up: a MONET study. Menopause 2018;25:89-97. DOI: https://doi.org/10.1097/GME.0000000000000951
20. Ramirez MF, Honigberg M, Wang D, et al. Protein biomarkers of early menopause and incident cardiovascular disease. J Am Heart Assoc 2023;12:e028849. DOI: https://doi.org/10.1161/JAHA.122.028849
21. Nair A, Pillai AJ, Nair N. Cardiovascular changes in menopause. Curr Cardiol Rev 2021;17:e230421187681. DOI: https://doi.org/10.2174/1573403X16666201106141811
22. Camilleri G, Borg M, Brincat S, et al. The role of cytokines in cardiovascular disease in menopause. Climacteric 2012;15:524-30. DOI: https://doi.org/10.3109/13697137.2012.700743
23. Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev 2009;230:160-71. DOI: https://doi.org/10.1111/j.1600-065X.2009.00794.x

How to Cite



Evaluating serum galectin-3 binding protein as a diagnostic and prognostic biomarker in pulmonary arterial hypertension: a comparative study. (2024). Global Cardiology, 2(4). https://doi.org/10.4081/cardio.2024.50