Reviews
16 April 2025

Cardiac wasting in patients with advanced cancer: state of the art review

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
1558
Views
302
Downloads
0
HTML

Authors

Cardiac wasting, a complex and understudied phenomenon, is observed in up to 40% of patients with advanced cancer, contributing to 20-30% of mortality within this cohort. This condition represents a significant determinant of impaired quality of life and increased mortality, highlighting its clinical importance. Numerous pathophysiological mechanisms have been identified in clinical and pre-clinical research as key drivers in the development and progression of cardiac wasting, including elevated circulating inflammatory cytokines, enhanced catabolic processes, hormonal dysregulation, dysfunction of the growth hormone-insulin-like growth factor I (GH-IGF-I) axis, oxidative stress, psychosocial factors, myosin heavy chain isoform switching, and, critically, cardiotoxic effects of anticancer therapies. Clinically, cardiac wasting manifests through a spectrum of symptoms and consequences, including muscle wasting, heart failure-like symptoms, impaired global longitudinal strain (GLS), and structural and functional alterations in the heart, particularly within the left ventricle. These cardiac alterations contribute to progressive cardiovascular decline. Preclinical and clinical studies have confirmed these observations across various models and patient cohorts, demonstrating significant cardiac changes, such as a 33% reduction in cardiomyocyte cross-sectional area, up to 21% decrease in left ventricular mass & 11% reduction in heart weight, and a 50% reduction in left ventricular axon length. Additionally, fibrosis in pre-clinical studies, preservation of left ventricular ejection fraction in some studies, and mild decreases in others, along with an 8.1% reduction in GLS and a 12.1% loss in left ventricular wall thickness, are observed, in conjunction with elevated circulating levels of interleukin-6 (IL-6). Given the substantial morbidity and mortality associated with cardiac wasting in advanced cancer, it is imperative to incorporate comprehensive cardiac assessment into routine follow-up care, refine patient stratification strategies, employ advanced diagnostic technologies in clinical trials, and prioritize research into the cardiovascular impacts of cancer treatments. A concerted focus on advancing the field of cardio-oncology is essential for mitigating the adverse outcomes of cardiac wasting in this vulnerable patient population.

Altmetrics

Downloads

Download data is not yet available.

Citations

1. Anker MS, Rassaf T, Zamorano JL, et al. Cardiac wasting and cancer. Eur Heart J 2024;45:3135-7. DOI: https://doi.org/10.1093/eurheartj/ehae438
2. Von Haehling S, Ebner N, Dos Santos MR, et al. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 2017;14:323-41. DOI: https://doi.org/10.1038/nrcardio.2017.51
3. Mansouri I, Allodji RS, Hill C, , et al. The role of irradiated heart and left ventricular volumes in heart failure occurrence after childhood cancer. Eur J Heart Fail 2019;21:509-18. DOI: https://doi.org/10.1002/ejhf.1376
4. Sun L, Quan XQ, Yu S. An epidemiological survey of cachexia in advanced cancer patients and analysis on its diagnostic and treatment status. Nutr Cancer 2015;67:1056-62. DOI: https://doi.org/10.1080/01635581.2015.1073753
5. Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 2011;12:489-95. DOI: https://doi.org/10.1016/S1470-2045(10)70218-7
6. Anker MS, Rashid AM, Butler J, Khan MS. Cardiac wasting in patients with cancer. Basic Res Cardiol 2025;120:25-34. DOI: https://doi.org/10.1007/s00395-024-01079-5
7. Anker MS, Sanz AP, Zamorano JL, et al. Advanced cancer is also a heart failure syndrome: a hypothesis. J Cachexia Sarcopenia Muscle 2021;12:533-7. DOI: https://doi.org/10.1002/jcsm.12694
8. Tichy L, Parry TL. The pathophysiology of cancer-mediated cardiac cachexia and novel treatment strategies: A narrative review. Cancer Med 2023;12:17706-17. DOI: https://doi.org/10.1002/cam4.6388
9. Volkova M, Russell R. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 2011;7:214-20. DOI: https://doi.org/10.2174/157340311799960645
10. Merz CNB, Dwyer J, Nordstrom CK, et al. Psychosocial stress and cardiovascular disease: pathophysiological links. Behav Med 2002;27:141-7. DOI: https://doi.org/10.1080/08964280209596039
11. Lena A, Wilkenshoff U, Hadzibegovic S, et al. Clinical and prognostic relevance of cardiac wasting in patients with advanced cancer. J Am Coll Cardiol 2023;81:1569-86. DOI: https://doi.org/10.1016/j.jacc.2023.02.039
12. Evertz R, Gödde K, Diehl C, et al. Cardiovascular and metabolic determinants of quality of life in patients with cancer. ESC Heart Fail 2022;10:167. DOI: https://doi.org/10.1002/ehf2.14175
13. Springer J, Tschirner A, Haghikia A, et al. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart J 2014;35:932-41. DOI: https://doi.org/10.1093/eurheartj/eht302
14. Sjöström M, Wretling ML, Karlberg I, et al. Ultrastructural changes and enzyme activities for energy production in hearts concomitant with tumor-associated malnutrition. J Surg Res 1987;42:304-13. DOI: https://doi.org/10.1016/0022-4804(87)90148-X
15. Welsh DC, Dipla K, McNulty PH, et al. Preserved contractile function despite atrophic remodeling in unloaded rat hearts. Am J Physiol Heart Circ Physiol 2001;281:H1131-6. DOI: https://doi.org/10.1152/ajpheart.2001.281.3.H1131
16. Artaza JN, Reisz-Porszasz S, Dow JS, et al. Alterations in myostatin expression are associated with changes in cardiac left ventricular mass but not ejection fraction in the mouse. J Endocrinol 2007;194:63-76. DOI: https://doi.org/10.1677/JOE-07-0072
17. Potter E, Marwick TH. Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC Cardiovasc Imaging 2018;11:260-74. DOI: https://doi.org/10.1016/j.jcmg.2017.11.017
18. Argilés JM, Stemmler B, López-Soriano FJ, Busquets S. Inter-tissue communication in cancer cachexia. Nat Rev Endocrinol 2018;15:9-20. DOI: https://doi.org/10.1038/s41574-018-0123-0
19. Vudatha V, Devarakonda T, Liu C, et al. Review of mechanisms and treatment of cancer-induced cardiac cachexia. Cells 2022;11:1040. DOI: https://doi.org/10.3390/cells11061040
20. Soto ME, Pérez-Torres I, Rubio-Ruiz ME, et al. Interconnection between cardiac cachexia and heart failure-protective role of cardiac obesity. Cells 2022;11:1039. DOI: https://doi.org/10.3390/cells11061039
21. Tian M, Asp ML, Nishijima Y, Belury MA. Evidence for cardiac atrophic remodeling in cancer-induced cachexia in mice. Int J Oncol 2011;39:1321-6.
22. Murphy KT. The pathogenesis and treatment of cardiac atrophy in cancer cachexia. Am J Physiol Heart Circ Physiol 2016;310:H466-77. DOI: https://doi.org/10.1152/ajpheart.00720.2015
23. Hadzibegovic S, Porthun J, Lena A, et al. Hand grip strength in patients with advanced cancer: A prospective study. J Cachexia Sarcopenia Muscle 2023;14:1682-94. DOI: https://doi.org/10.1002/jcsm.13248
24. Ishida J, Saitoh M, Doehner W, et al. Animal models of cachexia and sarcopenia in chronic illness: Cardiac function, body composition changes and therapeutic results. Int J Cardiol 2017;238:12-8. DOI: https://doi.org/10.1016/j.ijcard.2017.03.154
25. Lena A, Hadzibegovic S, Von Haehling S, et al. Sarcopenia and cachexia in chronic diseases: from mechanisms to treatment. Pol Arch Intern Med 2021;131:16135. DOI: https://doi.org/10.20452/pamw.16135
26. Zhou X, Wang JL, Lu J, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010;142:531-43. from: https://pubmed.ncbi.nlm.nih.gov/20723755/ DOI: https://doi.org/10.1016/j.cell.2010.07.011
27. Springer J, Anker MS, Anker SD. Advances in cachexia and sarcopenia research in the heart failure context: call for action. J Cardiovasc Med (Hagerstown) 2016;17:860-2. DOI: https://doi.org/10.2459/JCM.0000000000000480
28. Wang L, Ma W, Markovich R, et al. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res 1998;83:516-22. DOI: https://doi.org/10.1161/01.RES.83.5.516
29. Fröhlich AK, Porthun J, Talha KM, et al. Association of an impaired GH-IGF-I axis with cardiac wasting in patients with advanced cancer. Clin Res Cardiol 2024. Online ahead of print. DOI: https://doi.org/10.1007/s00392-024-02400-x
30. Osterziel KJ, Strohm O, Schuler J, et al. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 1998;351:1233-7. DOI: https://doi.org/10.1016/S0140-6736(97)11329-0
31. Ross RJM, Chew SL. Acquired growth hormone resistance. Eur J Endocrinol 1995;132:655-60. DOI: https://doi.org/10.1530/eje.0.1320655
32. Ross RJM. The GH receptor and GH insensitivity. Growth Horm IGF Res 1999;9 Suppl B:42–6. DOI: https://doi.org/10.1016/S1096-6374(99)80080-X
33. Anker SD, Volterrani M, Pflaum CD, et al. Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. J Am Coll Cardiol 2001;38:443-52. DOI: https://doi.org/10.1016/S0735-1097(01)01385-7
34. Nakao K, Minobe W, Roden R, et al. Myosin heavy chain gene expression in human heart failure. J Clin Invest 1997;100:2362-70. DOI: https://doi.org/10.1172/JCI119776
35. Reiser PJ, Portman MA, Ning XH, Moravec CS. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 2001;280:H814-20). DOI: https://doi.org/10.1152/ajpheart.2001.280.4.H1814
36. Dowd NP, Scully M, Adderley SR, et al. Inhibition of cyclooxygenase-2 aggravates doxorubicin-mediated cardiac injury in vivo. J Clin Invest 2001;108:585-90. DOI: https://doi.org/10.1172/JCI11334
37. Kotamraju S, Kalivendi SV, Konorev E, et al. Oxidant-induced iron signaling in doxorubicin-mediated apoptosis. Methods Enzymol 2004;378:362-82. DOI: https://doi.org/10.1016/S0076-6879(04)78026-X
38. Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B. Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem 2000;275:33585-92. DOI: https://doi.org/10.1074/jbc.M003890200
39. Chu CC, Liu X, Gao J, Hamdy RC, Chua BHL. Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 2006;290:H2606-13. DOI: https://doi.org/10.1152/ajpheart.01138.2005
40. Wu W, Lee WL, Wu YY, et al. Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem 2000;275:40113-9. DOI: https://doi.org/10.1074/jbc.M004108200
41. Kang YJ, Zhou ZX, Wang GW, et al. Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J Biol Chem 2000;275:13690-8. DOI: https://doi.org/10.1074/jbc.275.18.13690
42. Grethe S, Coltella N, Di Renzo MF, Pörn-Ares MI. p38 MAPK downregulates phosphorylation of Bad in doxorubicin-induced endothelial apoptosis. Biochem Biophys Res Commun 2006;347:781-90. DOI: https://doi.org/10.1016/j.bbrc.2006.06.159
43. Childs AC, Phaneuf SL, Dirks AJ, et al. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 2002;62:4592-8.
44. Wang GW, Klein JB, Kang YJ. Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther 2001;298:461-8. DOI: https://doi.org/10.1016/S0022-3565(24)29403-9
45. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003;97:2869-79. DOI: https://doi.org/10.1002/cncr.11407
46. Cramer L, Hildebrandt B, Kung T, et al. Cardiovascular function and predictors of exercise capacity in patients with colorectal cancer. J Am Coll Cardiol 2014;64:1310-9. DOI: https://doi.org/10.1016/j.jacc.2014.07.948
47. Tian M, Nishijima Y, Asp ML, et al. Cardiac alterations in cancer-induced cachexia in mice. Int J Oncol 2010;37:347-53. DOI: https://doi.org/10.3892/ijo_00000683
48. Anker MS, Hadzibegovic S, Lena A, et al. Recent advances in cardio-oncology: a report from the “Heart Failure Association 2019 and World Congress on Acute Heart Failure 2019.” ESC Heart Fail 2019;6:1140-8. DOI: https://doi.org/10.1002/ehf2.12551
49. Anker MS, von Haehling S, Landmesser U, et al. Cancer and heart failure-more than meets the eye: common risk factors and co-morbidities. Eur J Heart Fail 2018;20:1382-4. DOI: https://doi.org/10.1002/ejhf.1252
50. Kazemi-Bajestani SMR, Becher H, Butts C, et al. Rapid atrophy of cardiac left ventricular mass in patients with non-small cell carcinoma of the lung. J Cachexia Sarcopenia Muscle 2019;10:1070-82. DOI: https://doi.org/10.1002/jcsm.12451
51. Aimo A, Saccaro LF, Borrelli C, et al. The ergoreflex: how the skeletal muscle modulates ventilation and cardiovascular function in health and disease. Eur J Heart Fail 2021;23:1458-67. DOI: https://doi.org/10.1002/ejhf.2298
52. Anker SD, Khan MS, Khan LA, et al. The muscle hypothesis of shortness of breath in patients with cachexia. Global Cardiology 2024;2:57. DOI: https://doi.org/10.4081/cardio.2024.57
53. Coats AJS, Clark AL, Piepoli M, et al. Symptoms and quality of life in heart failure: the muscle hypothesis. Br Heart J 1994;72:S36-9. DOI: https://doi.org/10.1136/hrt.72.2_Suppl.S36
54. Khan MS, Butler J, Khan LA, Anker MS. Advanced cancer as a heart failure like syndrome due to cardiac wasting cardiomyopathy: facts and numbers. Global Cardiology 2024;2:58. DOI: https://doi.org/10.4081/cardio.2024.58
55. Hadzibegovic S, Sikorski P, Potthoff SK, et al. Clinical problems of patients with cachexia due to chronic illness: a congress report. ESC Heart Fail 2020;7:3414-20. DOI: https://doi.org/10.1002/ehf2.13052
56. Piepoli MF, Kaczmarek A, Francis DP, et al. Reduced peripheral skeletal muscle mass and abnormal reflex physiology in chronic heart failure. Circulation 2006;114:126-34. DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.605980
57. Ponikowski P, Piepoli M, Chua TP, et al. The impact of cachexia on cardiorespiratory reflex control in chronic heart failure. Eur Heart J 1999;20:1667-75. DOI: https://doi.org/10.1053/euhj.1999.1525
58. Nadruz W, West E, Sengeløv M, et al. Prognostic value of cardiopulmonary exercise testing in heart failure with reduced, midrange, and preserved ejection fraction. J Am Heart Assoc 2017;6:e006000. DOI: https://doi.org/10.1161/JAHA.117.006000
59. Lundholm K, Edström S, Ekman L, et al. A comparative study of the influence of malignant tumor on host metabolism in mice and man: evaluation of an experimental model. Cance. 1978;42:453-61. DOI: https://doi.org/10.1002/1097-0142(197808)42:2<453::AID-CNCR2820420212>3.0.CO;2-T
60. Drott C, Lonnroth C, Lundholm K. Protein synthesis, myosin ATPase activity and myofibrillar protein composition in hearts from tumour-bearing rats and mice. Biochem J 1989;264:191. DOI: https://doi.org/10.1042/bj2640191
61. Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 2001;98:9306-11. A DOI: https://doi.org/10.1073/pnas.151270098
62. Souza TA, Chen X, Guo Y, et al. Proteomic identification and functional validation of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators. Mol Endocrinol 2008;22:2689-702. DOI: https://doi.org/10.1210/me.2008-0290
63. Cosper PF, Leinwand LA. Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res 2011;71:1710-20. A DOI: https://doi.org/10.1158/0008-5472.CAN-10-3145
64. Mühlfeld C, Das SK, Heinzel FR, et al. Cancer induces cardiomyocyte remodeling and hypoinnervation in the left ventricle of the mouse heart. PLoS One 2011;6:e20424. DOI: https://doi.org/10.1371/journal.pone.0020424
65. Barkhudaryan A, Scherbakov N, Springer J, Doehner W. Cardiac muscle wasting in individuals with cancer cachexia. ESC Heart Fail 2017;4:458-67. DOI: https://doi.org/10.1002/ehf2.12184
66. Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2014;27:911-39. DOI: https://doi.org/10.1016/j.echo.2014.07.012
67. Jordan JH, Castellino SM, Meléndez GC, et al. Left ventricular mass change after anthracycline chemotherapy. Circ Heart Fail 2018;11:e004560. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.117.004560
68. Perhonen MA, Franco F, Lane LD, et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol (1985) 2001;91:645-53. DOI: https://doi.org/10.1152/jappl.2001.91.2.645
69. de Groot PC, van Dijk A, Dijk E, Hopman MT. Preserved cardiac function after chronic spinal cord injury. Arch Phys Med Rehabil 2006;87:1195-200. DOI: https://doi.org/10.1016/j.apmr.2006.05.023
70. Anker MS, Ebner N, Hildebrandt B, et al. Resting heart rate is an independent predictor of death in patients with colorectal, pancreatic, and non-small cell lung cancer: results of a prospective cardiovascular long-term study. Eur J Heart Fail 2016;18:1524-34. DOI: https://doi.org/10.1002/ejhf.670
71. Anker MS, Frey MK, Goliasch G, et al. Increased resting heart rate and prognosis in treatment‐naïve unselected cancer patients: results from a prospective observational study. Eur J Heart Fail 2020;22:1230. DOI: https://doi.org/10.1002/ejhf.1782
72. Albrecht A, Porthun J, Eucker J, et al. Spontaneous non-sustained ventricular tachycardia and premature ventricular contractions and their prognostic relevance in patients with cancer in routine care. Cancers (Basel) 2021;13:2303. DOI: https://doi.org/10.3390/cancers13102303
73. Anker MS, von Haehling S, Coats AJS, et al. Ventricular tachycardia, premature ventricular contractions, and mortality in unselected patients with lung, colon, or pancreatic cancer: a prospective study. Eur J Heart Fail 2021;23:145-53. DOI: https://doi.org/10.1002/ejhf.2059
74. Hweidi IM, Al-Omari AK, Rababa MJ, et al. Cardiac cachexia among patients with chronic heart failure: A systematic review. Nurs Forum (Auckl) 2021;56:916-24. DOI: https://doi.org/10.1111/nuf.12623
75. Saha S, Singh PK, Roy P, Kakar SS. Cardiac cachexia: unaddressed aspect in cancer patients. Cells 2022;11:990. DOI: https://doi.org/10.3390/cells11060990
76. Stevens SCW, Velten M, Youtz DJ, et al. Losartan treatment attenuates tumor-induced myocardial dysfunction. J Mol Cell Cardiol 2015;85:37-47. DOI: https://doi.org/10.1016/j.yjmcc.2015.05.007
77. Macedo AVS, Hajjar LA, Lyon AR, et al. Efficacy of dexrazoxane in preventing anthracycline cardiotoxicity in breast cancer. JACC CardioOncol 2019;1:68-79. DOI: https://doi.org/10.1016/j.jaccao.2019.08.003
78. Anker SD, Butler J, Talha KM, Friede T. Using multiple primary endpoints in clinical trials with a focus on heart failure. Global Cardiology 2024;2:33. DOI: https://doi.org/10.4081/cardio.2024.33
79. Rosano GMC. Clinical trial design, endpoints and regulatory considerations in heart failure. Global Cardiology 2024;2:18. DOI: https://doi.org/10.4081/cardio.2024.18
80. Anker MS, Lena A, Roeland EJ, et al. Patient-reported ability to walk 4 m and to wash: New clinical endpoints and predictors of survival in patients with pre-terminal cancer. J Cachexia Sarcopenia Muscle 2023;14:1670-81. DOI: https://doi.org/10.1002/jcsm.13247
81. Anker MS, Potthoff SK, Lena A, et al. Cardiovascular health-related quality of life in cancer: a prospective study comparing the ESC HeartQoL and EORTC QLQ-C30 questionnaire. Eur J Heart Fail 2023;25:1635-47. DOI: https://doi.org/10.1002/ejhf.2951
82. Nayak MG, George A, Vidyasagar MS, et al. Quality of life among cancer patients. Indian J Palliat Care 2017;23:445. DOI: https://doi.org/10.4103/IJPC.IJPC_82_17
Markus S. Anker, German Centre for Cardiovascular Research (DZHK), Partner Site Berlin; Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin; Department of Cardiology, Angiology and Intensive Care CBF, Deutsches Herzzentrum Der Charité, Berlin; Charité ‑ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Campus Benjamin Franklin, Berlin

School of Cardiovascular and Metabolic Health, University of Glasgow, UK

How to Cite



1.
Khan LA, Shahzeb Khan M, Usman Latif R, Anker MS. Cardiac wasting in patients with advanced cancer: state of the art review. Global Cardiol [Internet]. 2025 Apr. 16 [cited 2025 Jun. 16];3(1). Available from: https://www.globalcardiology.info/site/article/view/65