COVID-19 myocarditis

Published: March 28, 2024
Abstract Views: 1629
PDF: 73
HTML: 12
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Background: Myocarditis can be observed in patients with COVID-19. Myocarditis can also be seen in patients vaccinated against SARS-CoV-2 infection, the etiological agent of this disease. Epidemiological, morphological, pathophysiological, clinical aspects, clinical course, and potential therapeutics for patients with COVID-19 myocarditis are not entirely clear.
Methods: We perform a search in PubMed linking the terms “COVID-19 and myocarditis”, “SARS-CoV-2 and myocarditis”, and “vaccine and myocarditis and COVID-19”. A hand-search of references from retrieved papers has also been done. We selected papers dealing with the epidemiological, morphological, clinical aspects, and therapeutic regarding COVID-19 myocarditis.
Results: Myocarditis can be clinically diagnosed in about 2% of patients with COVID-19 illness, but its prevalence is higher (up to 33%) in autopsied with this disease. At magnetic resonance imaging, myocarditis can be diagnosed in up to 60% patients in the short-term follow up after SARS-CoV-2 infection. A few ultrastructural studies have detected SARS-CoV-2 in endothelial cells, macrophages, neutrophils, fibroblasts, and inside cardiomyocytes. Shortness of breath, fever, cough, and precordial chest pain are the main clinical symptoms; in half patients, ground glass opacities in chest X-ray are also observed, although oxygen saturation may be normal. COVID-19 myocarditis may occur in a patient with no past cardiac history and may alternatively be a late phenomenon in the course of the disease. COVID-19 myocarditis can also affect children and adolescents; acute heart failure is the predominant clinical manifestation, including fulminant myocarditis, in this population. Elevated troponin blood levels are observed in the majority of patients. Abnormal electrocardiogram findings – usually ST-segment changes and inverted T waves – can be detected in at least 25% of cases. Abnormal echocardiography can be found in 3% of cases and left ventricular systolic dysfunction can be found in 67% of such cases. The clinical course of COVID-19 myocarditis is usually benign with most patients recovering from the myocardial insult. Non-steroidal anti-inflammatory drugs are the treatment for noncomplicated cases; colchicine is added in case of associated pericarditis. Corticosteroids have largely been used. Mechanical support is lifesaving in cases of cardiogenic shock. Post-vaccination myocarditis is very rare, and less frequently found than COVID-19 myocarditis.
Conclusions: Although relative rare, myocarditis may be a serious complication of COVID-19 illness.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

John Hopkins Coronavirus Resource Center. COVID-19 dashboard. Available from: https://coronavirus.jhu.edu/map.html. Accessed on: November 10, 2023.
Offit PA. Bivalent Covid-19 vaccines – a cautionary tale. N Engl J Med 2023;388:481-3. DOI: https://doi.org/10.1056/NEJMp2215780
Dormuth CR, Kim JD, Fisher A, Piszczek J, Kuo IF. Nirmatrelvir-ritonavir and COVID-19 mortality and hospitalization among patients with vulnerability to COVID-19 complications. JAMA Network Open 2023;6:e2336678. DOI: https://doi.org/10.1001/jamanetworkopen.2023.36678
Del Rio C, Malani PN. COVID-19 in the fall of 2023 – forgotten but not gone. JAMA 2023;330:1517-8. DOI: https://doi.org/10.1001/jama.2023.19049
Lala A, Johnson KW, Januzzi JL, et al. Prevalence and impact of myocardial injury in patients with COVID-19 infection. J Am Coll Cardiol 2020;76:533-46. DOI: https://doi.org/10.1016/j.jacc.2020.06.007
Zeng JH, Liu YX, Yuan J, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection 2020;48:773-7. DOI: https://doi.org/10.1007/s15010-020-01424-5
Arentz M, Yim E, Klaff L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA 2020;323:1612-4. DOI: https://doi.org/10.1001/jama.2020.4326
Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;5:811-8. DOI: https://doi.org/10.1001/jamacardio.2020.1017
Lippi G, Lavie CJ, Gomar FS. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis 2020;63:390-1. DOI: https://doi.org/10.1016/j.pcad.2020.03.001
Moammar MQ, Ali MI, Mahmood NA, Debari VA, Khan MA. Cardiac troponin I levels and alveolar-arterial oxygen gradient in patients with community-acquired pneumonia. Heart Lung Circ 2010;19:90-2. DOI: https://doi.org/10.1016/j.hlc.2009.08.009
Ammirati E, Lupi L, Palazzini M, et al. Prevalence, characteristics, and outcomes of COVID-19-associated acute myocarditis. Circulation 2022;145:1123-39. DOI: https://doi.org/10.1161/CIRCULATIONAHA.121.056817
Gluckman TJ, Bhave NM, Alen LA, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-COV-2 infection, and return to play. J Am Coll Cardiol 2022;79:1717-56. DOI: https://doi.org/10.1016/j.jacc.2022.02.003
Puntmann VO, Carerj L, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;5:1265-73. DOI: https://doi.org/10.1001/jamacardio.2020.3557
Fox SE, Akmatbekov A, Harber JL, Li G, Brown Q, Heide RSV. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med 2020;8:681-6. DOI: https://doi.org/10.1016/S2213-2600(20)30243-5
Wichmann D, Sperhake JP, Lütgetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Int Med 2020;173:268-77. DOI: https://doi.org/10.7326/L20-1206
Basso C, Leone O, Rizzo S, et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J 2020;41:3827-35. DOI: https://doi.org/10.1093/eurheartj/ehaa664
Bradley BT, Maioli H, Jonhston R, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington state: case series. Lancet 2020;396:320-32. DOI: https://doi.org/10.1016/S0140-6736(20)31305-2
Bois MC, Boire NA, Layman AJ, et al. COVID-19-associated nonocclusive fibrin microthrombi in the heart. Circulation 2021;143:230-43. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.050754
Halushka MK, Heide RSV. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 post-mortem examinations. Cardiovasc Pathol 2021;50:107300. DOI: https://doi.org/10.1016/j.carpath.2020.107300
Kawakami R, Sakamoto A, Kawai K, et al. Pathological evidence for SARS-COV-2 as a cause a myocarditis. J Am Col Cardiol 2021;77:314-25. DOI: https://doi.org/10.1016/j.jacc.2020.11.031
Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J 2020;41:1861-62. DOI: https://doi.org/10.1093/eurheartj/ehaa286
Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 2020;22:911-5. DOI: https://doi.org/10.1002/ejhf.1828
Dolhnikoff M, Ferranti JF, Monteiro RAA, et al. SARS-COV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc Health 2020;4:790-4 DOI: https://doi.org/10.1016/S2352-4642(20)30257-1
Escher F, Pietsch H, Aleshcheva G, et al. Detection of viral SASRS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail 2020;7:2440-7. DOI: https://doi.org/10.1002/ehf2.12805
Guzuik TJ, Mocchidin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 2020;116:1666-87. DOI: https://doi.org/10.1093/cvr/cvaa106
Lindner D, Fitzek A, Braüninger H, et al. Association of cardiac infection with SARS-COV-2 in COVID-19 autopsy cases. JAMA Cardiol 2020;5:1281-5. DOI: https://doi.org/10.1001/jamacardio.2020.3551
Sawalha K, Abozenah M, Kadado AJ, et al. Systematic review of COVID-19 related myocarditis: insights on management and outcome. Cardiovasc Rev Med 2021;23:107-13. DOI: https://doi.org/10.1016/j.carrev.2020.08.028
8 Kariyanna PT, Sutarjono B, Grewal E, et al. A systematic review of COVID-19 and myocarditis. Am J Med Case Rep 2020;8:299-305. DOI: https://doi.org/10.12691/ajmcr-8-9-11
Luetkens JA, Issak A, Zimmer S, et al. Diffuse myocardial inflammation in COVID-19 associated myocarditis detected by multiparametric cardiac magnetic resonance imaging. Circ Cardiovasc Imaging 2020;13: e010897. DOI: https://doi.org/10.1161/CIRCIMAGING.120.010897
Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;5:819824. DOI: https://doi.org/10.1001/jamacardio.2020.1096
Sardari A, Tabarsi P, Borhany H, Mohiadddin R, Houshmand G. Myocarditis detected after COVID-19 recovery. Eur Heart J Cardiovasc Imaging 2020;22:131-2. DOI: https://doi.org/10.1093/ehjci/jeaa166
Dong N, Cai J, Zhou Y, Liu J, Li F. End-stage heart failure with COVID-19. JACC Heart Fail 2020;8:515-7. DOI: https://doi.org/10.1016/j.jchf.2020.04.001
Trojen B, Gonzales FJ, Shust GF. COVID-19-associated myocarditis in an adolescent. PED Infect Dis J 2020;39:e204-5. DOI: https://doi.org/10.1097/INF.0000000000002788
Kishore R, Choudekar A, Xess AB, et al. Dilated cardiomyopathy in a child with COVID-19. Ind J Ped 2021;88:278-9. DOI: https://doi.org/10.1007/s12098-020-03524-4
Oleszak F, Maryniak A, Botti E, et al. Myocarditis associated with COVID-19. Am J Med Case Rep 2020;8:498-502. DOI: https://doi.org/10.12691/ajmcr-8-12-19
Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J 2021;42:206. DOI: https://doi.org/10.1093/eurheartj/ehaa190
Doyen D, Moceri P, Ducreaux D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet 2020;395:1516. DOI: https://doi.org/10.1016/S0140-6736(20)30912-0
Kim IC, Kim JY, Kim HA, Han S. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J 2020;41:1859. DOI: https://doi.org/10.1093/eurheartj/ehaa288
Yuan WF, Tang X, Zhao XX. An asymptomatic driver with COVID-19: atypical suspected myocarditis by SARS-CoV-2. Cardiovasc Diagn Ther 2020;10:242-3. DOI: https://doi.org/10.21037/cdt.2020.03.08
Dweck MR, Bularga A, Hahn RT, et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging 2020;21:949-58. DOI: https://doi.org/10.1093/ehjci/jeaa178
Camelli M, Pastore MC, Aboumarie HS, et al. Usefulness of echocardiography to detect cardiac involvement in COVID-19 patients. Echocardiography 2020;37:1278-86. DOI: https://doi.org/10.1111/echo.14779
Ferreira VM, Menger JS, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation. Expert recommendations. J Am Coll Cardiol 2018;72:3159-76. DOI: https://doi.org/10.1016/j.jacc.2018.09.072
Chen BH, Shi NN, Wu CW, et al. Early cardiac involvement in patients with acute COVID-19 infection identified by multiparametric cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2021;22:844-51. DOI: https://doi.org/10.1093/ehjci/jeab042
Huang L, Zhao P, Tang D, et al. Cardiac involvement in patients recovered from COVID-19 identified using magnetic resonance imaging. JACC Cardiovasc Imaging 2020;13:2330-9. DOI: https://doi.org/10.1016/j.jcmg.2020.05.004
Most ZM, Hendren N, Drazner MH, Peri TM. Striking similarities of multisystem inflammatory syndrome in children and a myocarditis-like syndrome in adults. Circulation 2021;143:4-6. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.050166
Demertzis ZD, Dagher C, Malette KM, et al. Cardiac sequelae of novel coronavirus disease 2019 (COVID-19): a clinical case series. Eur Heart J Case Rep 2020;4:1-6. DOI: https://doi.org/10.1093/ehjcr/ytaa179
Sang III CJ, Heindl B, von Mering G, et al. Stress-induced cardiomyopathy precipitated by COVID-19 and influenza A coinfection. J Am Coll Cardiol Case Rep 2020;2:1356-8. DOI: https://doi.org/10.1016/j.jaccas.2020.05.068
De Vita S, Ippolito S, Caraciollo MM, Barosi A. peripartum cardiomyopathy in a COVID-19 infected woman: differential diagnosis with myocarditis. A case report from a Hub Institution during the COVID-19 outbreak. Echocardiography 2020;37:1673-7. DOI: https://doi.org/10.1111/echo.14873
Yousefzai R, Bhimaraj A. Misdiagnosis in the COVID-19 era. JACC Case Rep 2020;2:1614-9. DOI: https://doi.org/10.1016/j.jaccas.2020.04.018
Wenzel P, Kopp S, Göbel S, et al. Evidence of SARS-COV-2 mRNA in endomyocardial biopsies of patients with clinically suspected myocarditis tested negative for COVID-109 in nasopharyngeal swab. Cardiovasc Res 2020;116:1661-3. DOI: https://doi.org/10.1093/cvr/cvaa160
Rheman M, Gondal A, Rehman N. Atypical manifestation of COVID-19-induced myocarditis. Cureus 2020;12:e8685. DOI: https://doi.org/10.7759/cureus.8685
Dabbagh MF, Aurora L, D’Souza P, Weinmann AJ, Bhargava P, Basir MB. Cardiac tamponade secondary to COVID-19. JACC Case Rep 2020;2:1326-30. DOI: https://doi.org/10.1016/j.jaccas.2020.04.009
Ortiz AI, Mora JC, Sionis A, Pâmies J, Montiel J, Tauron M. Fulminat myocarditis due to COVID-19. Rev Esp Cardiol 2020;73:503-4. DOI: https://doi.org/10.1016/j.rec.2020.04.005
Hua A, O’Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J 2020;41:2130. DOI: https://doi.org/10.1093/eurheartj/ehaa253
Coyle J, Igbinomwanhia E, Nadales AS, Danciu S, Chu, Shah N. A recovered case of COVID-19 myocarditis and ARDS treated with corticosteroids, tocilizumab, and experimental AT-001. JACC Case Rep 2020;2:1331-6. DOI: https://doi.org/10.1016/j.jaccas.2020.04.025
Fried JA, Ramasubbu K, Bhatt R, et al. The variety of cardiovascular presentations of COVID-19. Circulation 2020;141:1930-6. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.047164
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846-8. DOI: https://doi.org/10.1007/s00134-020-05991-x
Usui E, Nagaoka E, Ikeda H, et al. Fulminant myocarditis with COVID-19 infection having normal C-reactive protein and serial magnetic resonance follow-up. ESC Heart Fail 2023;10:1426-30. DOI: https://doi.org/10.1002/ehf2.14228
Ichimura S, Oikawa M, Ikeda A, et al. A case of COVID-19-associated fulminant myocarditis due to SASRS-COV-2 Omicron BA.2 lineage in an unvaccinated female. J Cardiol Cases 2023;28:1-3. DOI: https://doi.org/10.1016/j.jccase.2023.02.016
Mevorach D, Anis E, Cedar N, et al. Myocarditis after BNT162b2 mRNA vaccine against Covid-19 in Israel. N Engl J Med 2021;385:2140-9. DOI: https://doi.org/10.1056/NEJMoa2109730
Larson KF, Ammirati E, Adler ED, et al. Myocarditis after BNT162b2 and mRNA-1273 vaccination. Circulation 2021;144:506-8. DOI: https://doi.org/10.1161/CIRCULATIONAHA.121.055913
Shahid R, Tang WHW, Klein ALL, Kwon D, Amdani S. Is the mRNA COVID-19 vaccine safe in patients with a prior history of myocarditis? J Card Fail 2023;29:108-11. DOI: https://doi.org/10.1016/j.cardfail.2022.06.011

How to Cite

Bestetti, R. B., Furlan-Daniel, R., & Pereira, L. P. (2024). COVID-19 myocarditis. Global Cardiology, 2(1). https://doi.org/10.4081/cardio.2024.21